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Fine-Grained Land Use Classification at the City
Scale Using Ground-Level Images

Yi Zhu, Xueqing Deng and Shawn Newsam

Abstract—Multimedia researchers have exploited large collec-
tions of community-contributed geo-referenced images to better
understand a particular image, such as its subject matter or
where it was taken, as well as to better understand a geographic
location, such as the most visited tourist spots in a city or what the
local cuisine is like. The goal of this paper is to better understand
location. In particular, we use geo-referenced image collections
to better understand what occurs in different parts of a city at
fine spatial and activity class scales. This problem is known as
land use mapping in the geographical sciences.

We propose a novel framework to perform fine-grained land
use mapping at the city scale using ground-level images. Mapping
land use is considerably more difficult than mapping land cover
and is generally not possible using overhead imagery as it
requires close-up views and seeing inside buildings. We postulate
that the growing collections of georeferenced, ground-level images
suggest an alternate approach to this geographic knowledge
discovery problem. We develop a general framework that uses
Flickr images to map 45 different land-use classes for the City
of San Francisco. Individual images are classified using a novel
convolutional neural network containing two streams, one for
recognizing objects and another for recognizing scenes. This
network is trained in an end-to-end manner directly on the
labeled training images. We propose several novel strategies to
overcome the noisiness of our user-generated data including
search-based training set augmentation and online adaptive
training. We derive a ground truth map of San Francisco in
order to evaluate our method. We demonstrate the effectiveness of
our approach through geo-visualization and quantitative analysis.
Our framework achieves over 29% recall at the individual
land parcel level which represents a strong baseline for the
challenging 45-way land use classification problem especially
given the noisiness of the image data.

Index Terms—Geo-Referenced Images, Land Use Classifica-
tion, Convolutional Neural Networks, Proximate Sensing

I. INTRODUCTION

THE proliferation of camera-equipped mobile devices,
primarily smart-phones, has generated large collections

of geo-referenced ground-level images and videos. Multimedia
researchers have recognized the value of these collections and
exploited them for two broad categories of applications: 1)
understanding or annotating the images and videos themselves,
and 2) understanding or annotating the locations where the
images and videos were captured.
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Fig. 1. Traditional approaches to land use mapping are restricted to a limited
number of classes as shown in the map on the top. Our goal in this paper
is to produce fine-grained maps as shown on the bottom using ground-level
images. The figure is best viewed in color.

With regards to the first category of applications, multimedia
researchers have leveraged large collections of community-
contributed geo-referenced images and videos to perform tag
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recommendation [1], video search [2], event recognition [3],
location estimation [4], [5], [6], [7], summarize personal
collections and perform story telling [8], and even provide
guidance on taking better photos [9].

The second category of applications can be thought of as
performing geographic discovery, and includes tasks such as
visual summarization of geographic areas [10], travel [11] and
point of interest [12], [13] exploration and recommendation,
food recognition [14], clothing recommendation for antici-
pated journeys [15], and learning generic facial attributes [16].

Our work in this paper falls into the second category in that
its goal is geographic discovery. Specifically, we leverage large
collections of community-contributed photos to map land use.

Mapping land cover and land use, and their changes, are two
fundamental geographic tasks. While land cover and land use
are related and often overlap, their distinctions are important.
Land cover “is the physical material at the surface of the
Earth. It is the material that we see and which directly interacts
with electromagnetic radiation and causes the level of reflected
energy that we observe as the tone or the digital number at
a location in an aerial photograph or satellite image. Land
covers include grass, asphalt, trees, bare ground, water, etc.
Land use, by contrast, is a description of how people use the
land. Urban and agricultural land uses are two of the most
commonly recognized high-level classes of use. Institutional
land, sports grounds, residential land, etc. are also all land
uses” [17]. Land cover can be mapped using overhead imagery
since this imagery is essentially the reflected energy discussed
above. Mapping land use is much more difficult.

Detailed and accurate land use information is important
for building smart cities [18], [19], [20], [21], [22] as it
can help with tasks such as environmental monitoring, urban
planning, resource allocation, traffic control and governmental
management. In particular, the transformation of land use over
time provides a wealth of information for both the government
and individuals to make informative decisions. Traditionally,
land use maps are generated using survey-based approaches
which requires enormous human effort. Further, these maps
are only updated every 5 to 10 years and thus do not convey
important information of how urban functional structures are
changing. There is a great need to develop systems which can
automatically generate accurate and up-to-date land use maps
on a large scale.

Most research on automated land use classification utilizes
high-resolution overhead (remote sensing) imagery [23], [24],
[25]. However, while it might be possible to distinguish some
land use classes using overhead imagery, such as airports from
residential areas as is done in [26], it is much more difficult
to determine land use in complex urban areas from above. In
contrast, images taken at ground level are potentially more
indicative. For example, overhead imagery is unlikely to be
effective for determining whether a building is a restaurant
or a barber shop whereas ground-level images taken inside
the building can help decide this easily. In general, overhead
imagery has limited ability to perform land use mapping at
fine class granularity.

There have been recent efforts [27], [28] to utilize other
data sources that are informative on how the land is used. This

includes point of interest (POI) data [29], street view images
[30], [31], mobile phone data [32] and social multimedia [33].
However, these data sources are also limited in how well they
can see inside buildings.

This motivates our work in this paper on exploring large on-
line photos collections for performing large-scale fine-grained
land use mapping. Popular social photo sharing websites
present an all-around view of the world and contain a wealth of
information. With more than 400 million geotagged images at
Flickr alone, there is an exciting opportunity to automatically
generate up-to-date city-scale land use maps. However, this
endeavor faces many technical challenges including:

• The lack of ground truth land use maps makes it difficult
to evaluate the proposed methods.

• It is difficult to manually label a large collection of
images to train the classifiers, particularly deep learning
based ones, so that weakly supervised or unsupervised
learning is necessary.

• The photos at the online sharing websites are very noisy
in terms of image quality, inaccurate geotags, uneven
spatial distribution, etc.

To address these challenges, we first introduce a ground
truth land use map of the City of San Francisco for evaluating
the proposed methods. The ground truth map has a three
level hierarchy: 5 top classes, 16 middle classes and 45 fine-
grained classes. We then train a novel convolutional neural
network (CNN) in a weakly supervised and end-to-end manner
to classify individual images as depicting one of the land
use classes. Finally, we propose several novel strategies to
overcome the noisiness of the online photos, including search-
based training dataset augmentation, online adaptive training
and classification networks with two streams, one for objects
and another for scenes.

Our work in this paper represents a thorough investigation
into mapping fine-grained land use on a large-scale using
online photos. There are several distinctive aspects of our
work. First, is the fine granularity of our classes. As shown in
Figure 1, traditional approaches usually perform only coarse-
level land use classification with fewer than 10 classes for
example. However, our approach considers 45 classes and can
be easily extended to more classes. The fine granularity makes
the problem more challenging yet more applicable. Our work
also makes several algorithmic advances. The salient, novel
contributions of our work include:

• To the best of our knowledge, our work is the first to
conduct fine-grained land use mapping using ground level
images available at photo sharing websites.

• We combine the Land Based Classification Standards
(LBCS) and Google places API to create a ground truth
map of the City of San Francisco. This map can be used
to quantitatively evaluate proposed approaches to land use
classification.

• We introduce online adaptive training to help address
how noisy the online photos are. The strategy not only
increases the classification accuracy, but also makes our
trained model more robust to domain adaptation.

• We propose a two-stream classification network, with
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Fig. 2. Fine-grained land use maps do not exist for our study area which
is one of the motivations of our work. We therefore construct a ground truth
map using POI data from Google Places in order to evaluate our methods.
This data is fairly sparse, though, so there are a lot of locations for which
we do not have labels. We do not use these locations in our evaluation. This
figure is best viewed in color.

object- and scene-centric models, to further improve the
performance.

Our paper is organized as follows. After introducing related
work in Section II, we describe the construction of our ground
truth land use map as well as the details of our classification
framework in Section III. In Section IV, we describe our
dataset, implementation details, results and geo-visualizations.
We then discuss how various designs impact the results in
Section V, and finally conclude the paper in Section VI.

II. RELATED WORK

Our work has several lines of related research.
Large-scale geotagged photo collections Computer vision
and multimedia researchers have been leveraging large col-
lections of geotagged photos for geographic discovery for
around a decade. This includes mapping world phenomenon
[34], multimedia geolocalization [35], landmark recognition
and 3D modeling [36], smart city and urban planning [37],
land cover and land use classification [23], [31], sentiment
hotspot detection [38] and mapping human activity [39]. The
exponential growth of photo sharing and related websites along
with ever more publicly available multimedia sources make
this research paradigm a promising direction for a range of
interesting problems. Although such open-access multimedia
represents a wealth of information, analyzing it is challenging
due to how noisy it is. Challenges specific to using this data for
geographic discovery include inaccurate location information,
uneven spatial distribution, varying photographer intent and
license limitations. We are mindful of these challenges and
recognize they likely temper our results.

Our work is novel in that it uses a large collection of geo-
tagged photos to perform fine-grained land use classification.
We address several challenges mentioned above. We use region
shapefiles to reduce geolocation error. In addition, we create
a large training set (more than two million images) consisting
of Google and Flickr images to learn a robust CNN model.
Convolutional neural networks Deep learning is advancing
a number of pattern recognition and machine learning areas.
Deep convolutional neural networks (CNNs) have resulted in
often surprising performance gains in a range of computer
vision problems [40], [41], [42]. Key to CNNs’ performance

is their ability to learn high-level or semantic features from the
data as opposed to the hand-crafted low- to mid-level features
traditionally used in image analysis. Visualization of the fea-
ture maps learned by the convolutional layers during training
[43] shows how the features become increasingly semantic,
progressing from pixels, edges, color and texture, to motifs,
parts, objects, scenes and concepts. Another significant benefit
of the features learned by CNNs is their ability to generalize
to problems involving image datasets other than the ones
they were trained on [44]. This avoids having to retrain the
networks which can take from hours to days even on powerful
GPUs. Hence, several works have applied deep learning to
advance the state-of-the-art in land use classification [45], [46],
[47], [48], [49], [50], [51], [52], [53]. However, these works
either use overhead imagery or only perform coarse-grained
land use classification.

In this paper, we also use CNNs to classify the land use
depicted in an image but introduce a novel learning technique
termed online adaptive training to reduce the effect of the noisy
web images during fine-tuning. We also propose a two-stream
network, consisting of object- and scene-centric models, to
further improve the land use classification performance.
Land cover and land use classification Land cover and land
use classification are important tasks in geographic science.
The maps they produce are critical for a range of important
societal problems. However, land cover is distinct from land
use, despite the two terms often being used interchangeably.
Land cover is the physical material at the surface of the earth,
which includes grass, trees, bare ground, water, etc. Land use
is a description of how people utilize the land and of social-
economic activity. Land cover classification is typically per-
formed through the automated analysis of overhead imagery
[54], [55]. However, land use classification is more difficult
since it is often not possible from an overhead vantage point.
We need to see inside buildings to determine their use(s).
We also need to resolve details which are not discernible in
overhead imagery or are only observable from ground level.

Researchers have performed some initial investigation into
using ground-level photo collections for land cover [56], [57]
and land use [58], [59], [60], [31] classification. Here, we
only consider land use classification. [59] considered a two-
class land use problem: developed and undeveloped, and [60]
considered a limited number of land use classes on university
campuses. Both of these works are able to use existing ground
truth maps based on existing city zoning and campus maps for
evaluation. However, there are no existing ground truth maps
for our fine-grained problem. There is also some work [61],
[62], [63] which focuses on other fine-grained aspects of the
land use problem. For example, [61] focuses on fine-grained
time scales and [62] focuses on fine-grained levels of damage.
None of these works consider fine-grained land use classes.

III. FINE-GRAINED LAND USE CLASSIFICATION

This section provides the details of our approach. Section
III-A describes our dataset which includes our hierarchical
taxonomy of land use classes, our ground truth map and
our training and mapping image sets. Sections III-B and
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Fig. 3. Sample images from our training dataset. For each class, we display 4 images. The images are (manually) arranged from left to right based on how
accurately they depict the land use class to demonstrate how noisy the online photos are. The figure is best viewed in color.

III-C describe our end-to-end training framework and online
adaptive training strategy. Finally, Section III-D describes our
two-stream classification network.

A. Dataset

Land Use Taxonomy
The first challenge we face is deriving a fine-grained land
use taxonomy. Existing land use maps are limited to coarse
taxonomies with 10 classes or fewer. This is probably due
to the difficulty of the problem. After some investigation, we
found the Land Based Classification Standards (LBCS)1 of
the American Planning Association which “extends the notion
of classifying land uses by refining traditional categories into
multiple dimensions, such as activities, functions, building
types, site development character, and ownership constraints.
Each dimension has its own set of categories and subcate-
gories.” We adopt the “Function” dimension which refers to
the economic function or type of establishment using the land,
and consists of four levels with 9, 56, 212 and 154 classes each
(not all classes have subclasses).

However, not all of the LBCS classes are pertinent to
our problem since they 1) are not found in urban environ-
ments, such as the top-level class “Mining and extraction
establishment”, 2) are not observable in shared online photos,
such as the third-level class “Arts, entertainment, and recre-
ation:Performing arts or supporting establishment:Agent for
management services”, or 3) are not distinguishable in shared
online photos, such as the two third-level classes “Assisted-
living services” and “Life care or continuing care services”.
Again, our focus is on land use classification in urban areas
using shared online photos. We therefore prune and aggre-
gate the LBCS taxonomy to three levels with 5, 16 and 45

1https://www.planning.org/lbcs/

classes each. The five top-level classes are: (1) Residence
or accommodation functions; (2) General sales or services;
(3) Transportation, communication, information, and utilities;
(4) Arts, entertainment and recreation; (5) Education, public
admin, health care and other institution. The full taxonomy
can be found in Appendix A.
Ground Truth map
Fine-grained land use maps do not exist for our study area–this
is one of the primary motivations of our work. We do not have
an official ground truth to evaluate our results. We therefore
create a ground truth map2 using points of interest (POIs)
as indexed by Google Places. The Google Places application
programming interface (API)3 contains a large number of
place types that are correlated with our land use classes. Based
upon our previous work [28], we aligned the relevant place
types with our land use taxonomy and used a large number of
POIs from Google Places to create a land use map. As shown
in Figure 2, the Google Places data is fairly sparse and so we
do not have ground truth labels for many of the locations in our
study area. We do not use these locations in our evaluations.
Training and Mapping Image Datasets
We downloaded 96, 382 geotagged Flickr images for San
Francisco from 2016. These images will be labeled by our
trained classifier to generate the predicted land use map and
we thus refer to them as the mapping images.

Our classifier is trained in a supervised fashion so we need
labeled training images. Further, as a deep CNN, our classifier
needs a large amount of training images. We want to preserve
as much of the San Francisco Flickr images for mapping so
we need another source of labeled training data. We make the
observation that we do not need to know the locations of the
training images; all we need are the class labels. We therefore

2We will make this map publicly available in GIS compatible format.
3https://developers.google.com/places/
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Fig. 4. Overview of our two-stream land use classification framework. During training, the input is mixed batches of images from Google Images and Flickr
labeled with land use classes. Separate object- and scene-streams are used since each can be informative about the land use depicted in an image. During
inference, the prediction scores of the two streams are fused with equal weights. The red dashed arrows indicate how the online adaptive training determines
which training samples are used to perform network updates. Once trained, the network is applied to geotagged Flickr images of San Francisco in order to
map land use. This figure is best viewed in color.

perform a keyword search at Google Images using our fine-
grained class labels as keywords. We also perform keyword
expansion. For example, in addition to searching for images
using our land use class “school”, we also search using the
keywords “elementary school”, “high school”, “adult school”,
etc. This results in a large number of images returned from
Google Images, 35, 478 images for the class “school” and over
1 million images for all 45 classes.

We notice, though, that there is a potential domain shift
between the training images from Google and the mapping
images from Flickr which might limit the generalization of
our trained network. In particular, the Google images tend to
be simpler without complex backgrounds whereas the Flickr
images often have faces and people, have been manipulated us-
ing photo editing software and/or have complex backgrounds.
Therefore, we augment the Google training images with Flickr
images downloaded using keyword searchers but from loca-
tions other than San Francisco, such as Atlanta, New York,
Dallas, etc., in order to avoid overlap between our training and
mapping sets. Our final training set consists of over 2 million
images. We randomly split this into training and validation
sets using a 0.8 to 0.2 ratio. Sample training images can be
seen in Figure 3.

This search-based strategy for deriving the training images
has three benefits: (1) it results in a balanced, rich training
set; (2) it preserves all the San Francisco Flickr images for
mapping; and (3) the data labeling procedure is automated and
efficient. While it does result in noise in the training set, we
rely on the findings that deep neural networks are immune to
certain levels of noise and that their generalization capabilities

can sometimes actually be improved by it [64].
Land Parcel Shapefiles
Our land use maps, both the ground truth and predicted, are
based on the irregularly shaped polygons corresponding to
the land parcel footprints. These polygons are represented as
shapefiles in a geographical information system (GIS). Parcel
shapefiles are generally available. We download the parcel
shapefiles for San Francisco from DataSF [65].

Exploiting parcel shapefiles has several distinct advantages
over performing a regular gridding of the target area as has
been done in previous work [66], [67], [68]:

• It allows us to ignore images that are not located in the
regions we want to classify. In our case, those regions are
the parcel footprints. In order to tolerate some geolocation
error, we dilate the shapefile regions and regard a photo
that is within 5 meters from a region boundary as
being associated with that region. This geo-filtering of
spatially unrelated images refines our mapping dataset
from 96, 382 to 58, 418 images.

• The region boundaries of the resulting land use maps are
very precise. They are also georegistered and so can be
distributed for overlay on other GIS elements such as
street networks. Figure 2 shows the ground truth map
created using the parcel shapefiles.

B. End-to-End Learning

Standard approaches to land use/cover classification typ-
ically adopt a two stage pipeline [26] which first extracts
the image features, such as color histogram, shape, texture,
Scale Invariant Feature Transform (SIFT), GIST, or deep CNN
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Fig. 5. Sample geo-visualizations in downtown San Francisco. Though each shapefile (building) may contain multiple land use types, we show the one with
majority votes for clearer visualization. Slashed regions are correct predictions with respect to Google Map. The figure is best viewed in color.

features, and then trains an image classifier, such as a logistic
regression, support vector machine (SVM), or shallow neural
network classifier. This two stage framework has several short-
comings though: (1) the two stages are independent of each
other and might not learn the optimal combination of feature
extractor and classifier; and (2) the image features need to be
cached, at least during training, which can be computationally
and storage prohibitive for large-scale applications.

We therefore adopt an end-to-end deep learning framework
in which the image features and classifier are learned jointly
in an optimal fashion using CNNs. In particular, we train a
45-way classifier using the labeled training images. In order
to reduce the effects of the possible domain gap between the
Google and Flickr images, we use a batch size of 256 images
during training, half of which are from the Google Images
training set, and the other half are from the Flickr training set.

We adopt ResNet101 [69] as our network architecture due to
its good trade-off between accuracy and efficiency. Implemen-
tation details can be found in Section IV-B. We also explore
other model architectures, such as AlexNet [40], VGG16
[70], GoogleNet [71], ResNet34 [69] and DenseNet121 [72].
Comparisons between ResNet101 and the other architectures
can be found in Section V-A Discussion.

C. Online Adaptive Training

We propose a novel method for improving the performance
of our image classifier. We term this method online adaptive
training and use it overcome the noisiness of our training data.

Deep learning requires large amounts of training data.
One popular method for improving the performance of deep
learning classifiers, especially when there is limited training
data available for the task at hand, is to perform transfer
learning where classifiers that have been (pre-)trained on a
related task are fine-tuned rather than learned from scratch.

However, our training data is fairly noisy having been
derived through keyword searches. Noisy labels can lead to
poor local minima or model collapse during training. Manu-
ally cleaning our training dataset would be ideal but is not
possible due to its size. We thus need to learn useful visual
representations in the presence of label noise.

We thus propose online adaptive training as an unsuper-
vised dataset cleaning procedure. During training, we use the

distribution of the class prediction scores to determine which
samples to use for back propagating the network updates.
We only use samples with distinct prediction scores and
discard samples with uniform distributions. The intuition is
that samples with distinct prediction scores are easier for our
model to classify (correctly or incorrectly) whereas samples
with more uniform distribution scores are ambiguous and
thus can confuse our model. Note that, we use the same
training dataset in online learning as in the previous end-to-end
training. We just automatically ignore the effect of noisy labels
based on the prediction distribution during loss computation.

Let yi = [yi1, yi2, ..., yin] represent the prediction (softmax)
scores of training sample i and let n denote the number
of classes which is 45 in our situation. We calculate the
probability of discarding sample i as

pi = max(0, 2− exp |max(yi)− ȳi|). (1)

Here, ȳi is the mean of the prediction scores yi. When the
difference between the maximum and average of the prediction
scores of a training sample is large, pi will be small, and
so the probability of using it to update the network weights
will be high. As the distribution of the prediction scores
becomes more uniform, pi will become larger, and so will
the probability of discarding the sample. We use a threshold
to decide whether to discard a sample and set this threshold
to 0.5 in the experiments below. We empirically found 0.5
to be most effective through a grid search from 0.1 to 0.9.
We could alternately perform soft weighting where we use
the probability pi to weight the importance of each sample
instead of using a threshold to discard it. We explored both
the soft and hard selection schemes but did not observe much
difference in performance between them.

This sampling strategy is somewhat similar in motivation to
the idea of hard negative mining [73], [74], a useful strategy
for optimizing the training of machine learning models without
leveraging extra data. However, rather than relying on false
positives to improve the training of our model, we instead
rely on the distinctive images since our labels are noisy.

Our training procedure has two stages. We first perform
conventional end-to-end learning using our training data and
then fine tune the model using the proposed online adaptive
training framework. We show in the experiments below that
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TABLE I
LAND USE CLASSIFICATION PERFORMANCE: BOTH IMAGE-LEVEL
CLASSIFICATION AND SHAPEFILE-LEVEL MAPPING ACCURACY.

Classification Mapping
Method Accuracy Precision Recall F1 Score

SIFT 29.16 4.56 12.85 3.37
SIFT + Fisher Vector Encoding 31.20 5.01 13.67 3.67

ResNet101 fc Layer (Pre-trained) 37.87 7.92 18.98 5.59

ResNet101 (Fine-Tuned) 43.90 10.57 21.67 7.10
ResNet101 (Adaptive, Object) 46.73 12.30 25.41 8.29
ResNet101 (Adaptive, Scene) 42.93 10.11 20.09 6.89

ResNet101 (Two-Stream) 49.54 14.21 29.06 9.54

the online adaptive training improves the performance of our
classifiers.

D. Two Stream Network: Object and Scene

Multiple aspects of ground level images can be informative
of land use. Clearly, objects and their interactions can provide
clues about land use. But, so can the overall scenes or
environment depicted in the images. Therefore, inspired by
other work on multi-model learning [75], [76], we propose a
two-stream architecture with one stream focused on objects
and another on scenes.

Our object stream is a CNN model pretrained on the
ImageNet dataset [77]. We complement this with a scene-
centric model pretrained on the Places365 dataset [78]. We
hope our object stream can capture features about object shape,
color, texture, etc. Our scene stream can capture features about
scene layout, object interactions, etc. These two streams are
able to complement each other and perform better land use
classification. Both streams are fine tuned in two steps, first
using our training data and then using the adaptive online
training strategy described above.

In order to prevent the object and scene models from
collapsing into the same generic model during fine-tuning,
we preserve the models’ complementarity by fixing some of
their parameters. Specifically, we fix the weights of the first
convolutional groups of both the object and scene ResNet101
models during fine tuning. This helps ensure that the low- and
mid-level features remain object- and scene- oriented.

Our two-stream land use classification framework can be
seen in Figure 4.

IV. EXPERIMENTS

We first describe our dataset in Section IV-A and the
implementation details in Section IV-B. Then we report the
performance of our proposed approach in Section IV-C.

A. Dataset

As described above, our ground level image dataset has two
components, the training/validation set and the mapping set.

The training/validation is used to train our classifier and
evaluate it at the image level. It is constructed through keyword
search at Google Images and Flickr and contains 2, 159, 460
images spread over 45 land use class. The dataset is generally
balanced and has around 45, 000 images per class. We split the
dataset with a ratio of 0.8 to 0.2 for training and validation.
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Fig. 6. Image-level land use classification accuracy versus training epochs.
Without online adaptive training, the accuracy plateaus at epoch 12 (blue
curve). With adaptive training, the accuracy continues to increase (red curve).

The image-level classification accuracy of our CNN model is
evaluated on the validation set.

The mapping set consists of geotagged Flickr images taken
in the City of San Francisco in 2016. We download a total
of 96, 382 images using the Flickr API. However, after geo-
filtering using the land parcel shapefiles, the final mapping set
has 58, 418 images.

The mapping images are used to derive a land use map
through simple label propagation. That is, if an image is
associated with a particular parcel because it either falls inside
the parcel or is within five meters of it, and our classifier
predicts a particular land use class, then that class is assigned
to the parcel. Note that a single parcel can be assigned multiple
land uses which makes sense.

We evaluate the predicted land use map using the ground
truth map derived from Google Places (see Section III-A
above). We compute precision at the parcel level as the
number of correct predictions divided by the total number of
predictions. A prediction is considered correct if the class is in
the ground truth for that parcel. We also compute recall as the
number of ground truth classes we predict for a parcel divided
by the number of ground truth classes for that parcel. Finally,
we also the compute the F1 score as the harmonic average of
precision and recall.

B. Implementation Details

For the CNNs, we use the PyTorch toolbox. For all the
experiments and speed evaluation, we use a workstation with
an Intel Core I7 (4.00GHz) and 4 NVIDIA Titan X GPUs.
End-to-End learning: We use ResNet101 as our network
architecture for both the object and scene streams. The object
stream is pre-trained on the ImageNet dataset [77] and the
scene stream is pre-trained on the Places365 dataset [78]. We
change the final layers of each stream to 45-way classifiers
for fine tuning. The model is trained using stochastic gradient
decent with the default parameter values. The batch size is set
to 256. The initial learning rate is set to 0.01 and is divided
by 10 every 5 epochs. We end our training at epoch 12.
Online Adaptive Training Given the fine-tuned model, we
perform online adaptive training. We feed a batch of images
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Fig. 7. Per-class image-level classification accuracy (green) versus shapefile-level mapping recall (blue). The figure is best viewed in color.

to the network and forward compute the land use prediction
scores. We implement a custom loss layer to compute the
cross entropy loss according to (1). We favor the samples
with distinct prediction scores to perform back propagation,
and discard those samples with more uniformly distributed
prediction scores. Since the model is already fine-tuned, the
initial learning rate for the adaptive online training is set to
10−5, and divided by 10 every epoch. We stop the training at
epoch 4.
Two Stream Network As mentioned above, we fix parts of the
object and scene stream models during fine tuning to preserve
their complementarity. During inference, the results of the two
streams are combined using late fusion by an equal averaging
of the individual softmax scores.

C. Results

This section presents our land use classification results. We
compare end-to-end deep learning approaches to traditional
two-stage approaches which perform feature extraction and
classification separately; demonstrate the benefits of fine tun-
ing the networks on our image dataset; show the effectiveness
of our online adaptive learning strategy; and establish that
combining object and scene streams improves performance.
Further ablative studies are presented in Section V Discussion.

We present classification results at both the image and parcel
level. Image-level accuracy is determined using the validation
set downloaded from Google Images and Flickr (see Sections
III-A and IV-A). An image is considered as being labeled
correctly if the predicted land use class matches the class the
image is assigned to during the download process. Parcel-level

accuracy is determined by comparing the land use class(es)
assigned to the parcel, based on the image level classification,
to the ground truth label(s) of the parcel. Precision, recall,
and F1 scores are computed for the parcel-level results (see
Section IV-A).

Image-level Classification Results:

Top section of Table I: We first present the performance
of traditional two-stage approaches which perform feature
extraction and classification separately. We consider both
hand-crafted and deep-learning features. For hand-crafted fea-
tures, we extract Scale Invariant Feature Transform (SIFT)
features [79] which are then encoded as single, global bag
of visual words feature vectors through k-means clustering
or Fisher vector encoding. For deep-learning features, we
extract a 1000-dimension feature vector per image using the
last fully-connected layer of a ResNet101 CNN trained on
the ImageNet challenge. Classification for the hand-crafted
or deep-learning features is performed using support vector
machines (SVMs) trained on the training image dataset and
evaluated on the validation image dataset. As shown in Table
I, the deep-learning features result in much higher image-level
classification performance than the hand-crafted features. This
result is in line with many, similar findings in other problems
that the deep-learning features capture higher level semantics
and generalize better than hand-crafted features. Fisher vector
encoding results in a marginal improvement over k-means
clustering but is still not competitive with the deep-learning
features.
Bottom section of Table I: Here we list the performance of
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our proposed approach and detail the improvements brought
about by our novel strategies. First, we fine tune the deep
networks (object stream) on our data. Despite the fact that our
training dataset is quite noisy, our end-to-end trained model
outperforms the pre-trained model used as a generic feature
extractor. This indicates that end-to-end training is better than
a two-stage method, especially for domain transfer learning.
Second, we show the effectiveness of our proposed online
adaptive training strategy. It improves 3% over the end-to-end
trained model by discarding hard examples during fine-tuning.
As shown in Figure 6, the image-level classification accuracy
plateaus at epoch 12 (blue curve) without the online adaptive
training but, with our proposed method, the accuracy continues
to increase (red curve). Finally, combining the object- and
scene-streams results in an accuracy of 49.54% on the image
classification task with 45 classes. This result is promising
given how noisy our our crowd-sourced dataset is (as shown
in Figure 3).

Parcel-level Mapping Results:
We now evaluate our predicted land use maps at the parcel
level. We first observe that the parcel-level performance of
the various approaches is correlated with the image-level
performance. This indicates that future work on improving the
image-level accuracy will result in better land use maps.

In general, we observe that precision at the parcel level is
quite low, underscoring the difficulty of our problem. This low
precision is due to the large number of false positives that
result from the noisy collections of images often associated
with the parcels. This suggests an improved method for
propagating the image-level labels to the parcels, such as
applying a threshold. (Note that taking the majority vote is not
appropriate since a parcel can have multiple land use classes).
This is a topic for future work.

Recall at the parcel level is much better than precision. Our
two-stream network with adaptive online training achieves a
recall rate of 29.06% on the challenging 45-class land use
mapping problem, which is almost a 17% improvement over
the baseline two-stage approach using SIFT features. In the
following, we only discuss recall rates.

Sample geo-visualizations of the predicted land use maps
are shown in Figure 5. These regions were randomly picked
from downtown San Francisco. We show the majority vote
for each parcel to make the visualization simpler. The slashed
parcels indicate that the majority vote is one of the ground
truth classes. Taking the leftmost image in Figure 5 as an
example, we correctly predict a coffee house (Starbucks), a
clothing store (Ross Dress For Less), a school (music training
school) and a shopping mall (Macy’s). However, the museum
prediction is wrong because the building is a library. After
a sanity check, we actually have library prediction for that
shapefile, it is just museum has more photos and wins the
majority vote. Overall, we see our approach does well on
producing land use maps that are fine grained at both the class
and spatial levels.

Our results establish a starting baseline on this difficult
problem as represented in our dataset, and leave plenty of
room for other researchers to improve upon. New problems

TABLE II
CNN ARCHITECTURE SEARCH.

Method Accuracy (%) Speed (fps)
AlexNet 36.45 68.9
VGG16 43.88 25.6

GoogleNet 42.03 7.8
ResNet34 43.12 19.4
ResNet101 46.73 6.4

DenseNet121 47.29 3.8

and datasets with room for improvement are important for con-
tinued progress in deep learning. For example, state-of-the-art
accuracy on the new action recognition dataset Charades [80],
which is also crowd sourced and fine grained, is only around
15%, which provides significant opportunity for improvement
versus older datasets, such as ActivityNet [81], on which
accuracy is saturating. Our problem and dataset provide similar
opportunities for making progress on the difficult problem of
fine-grained, large-scale land use classification.

V. DISCUSSION

In this discussion section, we first compare different CNN
architectures in terms of their accuracy and efficiency on
our problem. Section V-B presents the per-class image- and
parcel-level performances, and Section V-C investigates why
and how the object and scene models are complementary. In
Section V-D, we explore how performance varies with class
granularity. Finally, in Section V-E, we investigate the domain
adaptability of our framework by applying it to other data
sources, in particular Instagram images.

A. CNN Architecture Search

As is well known, the performance of a CNN for a particular
task can depend greatly on its architecture, particularly its
depth, width, and number of internal connections. We therefore
perform a CNN architecture search to identify the optimal
network for our problem of classifying land use using noisy
web images, in terms of the trade-off between accuracy and ef-
ficiency. We compare several architectures including AlexNet,
VGG16, GoogleNet, ResNet34, ResNet101 and DenseNet121.
These architectures are the result of careful design and have
been widely used in different areas.

The results of our architecture search can be seen in Table II.
Here, we only report the image classification accuracy of the
object-centric model. The speed is reported as frames (images)
per second (fps). The higher the fps, the faster the model runs
during inference.

In general, deeper networks result in better performance.
One interesting observation is that VGG16 performs better
than ResNet34 despite the fact that VGG16 has 16 layers while
ResNet34 has 34 layers. ResNet34 is shown to perform better
than VGG16 on the object recognition task in the ImageNet
challenges [77]. This demonstrates that VGG16 is a more
robust model which has good generalization to noisy datasets.

DenseNet121 performs the best due to its deeper network,
implicit supervision and being less prone to overfitting. How-
ever, it is both memory and time expensive. We therefore
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Fig. 8. Per-class image-level classification accuracy of the object stream (green), scene stream (blue) and two-stream (red). We observe that the object and
scene information is complementary for recognizing most land use types. The figure is best viewed in color.

choose ResNet101 as our base CNN architecture due to its
trade-off between accuracy and efficiency. ResNet101 can
perform inference almost twice as fast as DenseNet121 (6.4
fps vs 3.8 fps), with a minor 0.5 performance drop.

B. Image-Level Classification versus Land Use Mapping

In Section IV-C, we found that land use mapping perfor-
mance is closely related to the image-level classification ac-
curacy. Intuitively, this makes sense because better image-level
classification should lead to better performance for subsequent
tasks that build upon it. We here explore that relationship in
greater detail by examining the per-class results as shown in
Figure 7.

We observe that there are some classes for which image-
level classification accuracy and land use mapping recall are
not correlated. For example, the image-level accuracy for the
“bicycle store” class is almost 80% since our object model
is good at detecting bicycles. However, the mapping recall
rate is less than 10%. This is likely due to the fact that
bicycle stores are usually quite small and so the noisiness
of the web images and the sensitivity of the geotags leads
to poor mapping performance. Also, for other land use types,
such as “bank”, “local government office”, “courthouse” and
“library”, the number of photos used for mapping is quite
small due to privacy issues or lack of photographer interest
in photographing these locations. Thus mapping recall rate of
these classes is thus also very low.

C. Object and Scene Complementarity

As shown in Table I, two-stream networks outperform the
single-stream ones, indicating that the object and scene streams
are complementary to each other. We now investigate this in
more detail.

Figure 8 compares the per-class accuracy of the object,
scene and two-stream models. Based on this, we make the
following two observations. (i) The object model performs
better than the scene model on most of the land use classes.
This could be because the presence of specific objects can
be more indicative of land use than the general scene. For
example, the object model outperforms the scene model on
the class “bicycle stores” by a large margin likely because
the presence of a bicycle is key for identifying this class. The
overall scene of a bicycle store can be similar to other land use
classes. (ii) The object and scene models are complementary
to each other. 39 out of 45 classes obtain better performance
when the outputs of the two models are fused. For the
remaining six classes, the performance decrease is marginal.

The five classes with the most improvement (amount in
parenthesis) after incorporating the scene model are “veteri-
nary” (18.12%), “amusement park” (12.30%), “movie theater”
(11.04%), “stadium” (10.97%) and “church” (9.86%). We be-
lieve that the scene cue is important for the recognition of these
land use classes because there are few objects specifically
related to these classes.

The six classes that have decreased performance are “hair
care” (−3.77%), “fire station” (−2.49%), “shopping mall”
(−2.31%), “art gallery” (−2.04%), “school” (−1.68%) and
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TABLE III
IMAGE-LEVEL CLASSIFICATION ACCURACY FOR DIFFERENT DATASET

GRANULARITIES.

Method 45-way 16-way 5-way
Fine Granularity 46.7 61.8 75.6

Middle Granularity − 60.2 68.4
Coarse Granularity − − 49.3

“police station” (−1.20%). The reason for the decrease in
performance is that the scene model simply performs poorly
on these classes.

D. Fine to Coarse

In some scenarios, fine-grained mapping might not be
necessary and so using the 16 middle or the 5 top level
classes is sufficient. This raises the question of whether is it
better to 1) still use a fine-grained classifier and aggregate the
classification results to derive the coarser classes, or 2) train
models specifically targeted at the coarser granularities. We
investigate this here by training 16-way and 5-way classifiers
on our dataset.

We call our original 45-way classifier the fine granularity
model, the 16-way classifier the middle granularity model
and the 5-way classifier the coarse granularity model. The
performances of these three classifiers on their respective prob-
lems are shown on the diagonal in Table III (this corresponds
to method 2 above). The other entries in this table show
the results of applying the fine granularity model and then
performing aggregation (method 1 above). We see that the fine
granularity model is beneficial even if the target is a coarser
set of classes. The fine granularity model achieves 75.6%
for the 5 class problem compared to 68.4% for the middle
and just 49.3% for the coarse granularity models. The image-
level models are not able to discriminate between the coarser
classes due the large intra-class image variation. For example,
the “General sales or services” top-level class includes many
concepts that are visually quite different, like bank and bakery,
hair care and restaurant.

E. Generalization to other Image Data Sources

We here explore whether our framework, in particular the
trained image classifiers, generalizes to mapping land use
given another source of images. We use Instagram as this
other source. This will allow us to observe the robustness of
our method and its transfer learning capability. It will also
demonstrate that our ground truth map can be used to evaluate
other approaches or data sources.

We download a total of 121, 567 Instagram images within
the city of San Francisco for the year of 2014 using the
Instagram API. We used our existing, trained models to
classify each Instagram image with its predicted land use
class and then mapped the results. The recall rate of this
mapping performance is 17.3%. Although it is lower than the
29.03% recall achieved on the Flikcr dataset, it nonetheless
demonstrates our model has decent domain adaptability. We
note that the Instagram images often differ substantially from

the Flickr images in style. Most Instagram images are selfie or
selfie-like, which portrays only close-by scenes and therefore
is not optimal for the recognition of land use classes.

VI. CONCLUSION

We presented a novel framework for fine-grained land use
classification at the city scale using ground-level images.
We established a three-level land use class taxonomy with
45 fine-grained classes and created a corresponding ground
truth map for San Francisco. Our algorithmic contributions
include online adaptive learning and a two-stream image-level
classifier that is trained in an end-to-end fashion. Our results
set a strong baseline for our problem and dataset.

In the future, we would like to improve our two-stream
model in the following directions. First, we plan to explore
multi-modal information, such as text, audio, video or other
input signals, to investigate their complementarity. Second, we
would like to modify our framework to incorporate a human-
in-the-loop since accurate fine-grained land use mapping likely
requires human knowledge or guidance. Third, based on our
observation that the object stream achieves better performance
than scene stream, we plan to further improve the object stream
by applying off-the-shelf object detectors that which specific
objects appear as well where they appear. This additional
knowledge can help identify which objects, including, possibly
their spatial co-occurrences, are key to determining various
land use classes.
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APPENDIX A
FULL DATASET HIERARCHY

We list the full dataset hierarchy in 3-level as below. There
are 5 top classes, 16 middle classes and 45 bottom classes.

1) Residence or accommodation functions
a) Hotels, motels, or other accommodation services

• lodging
2) General sales or services

a) Retail sales or service
• bicycle store
• car service
• department store
• home goods store
• book store
• clothing store
• jewelry store
• shoe store
• bakery
• pharmacy
• shopping mall

b) Finance and Insurance

• bank
c) Business, professional, scientific, and technical ser-

vices
• post office
• travel agency
• veterinary care

d) Food services
• restaurant
• coffee house
• night club
• bar

e) Personal services
• hair care

3) Transportation, communication, information, and utili-
ties

a) Transportation service
• bus station
• subway station
• train station
• parking

b) Communications and information
• library

4) Arts, entertainment and recreation
a) Performing arts or supporting establishment

• art gallery
• movie theater
• stadium

b) Museums and other special purpose recreational
institutions
• aquarium
• museum
• zoo

c) Amusement, sports, or recreation establishment
• park
• amusement park
• gym

5) Education, public admin, health care and other institu-
tion

a) Educational services
• school
• university

b) Public administration
• city hall
• courthouse
• local government office

c) Public safety
• fire station
• police station

d) Health and human services
• hospital

e) Religious institutions
• church
• temple
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