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ABSTRACT
This paper is the first work to perform spatio-temporal mapping
of human activity using the visual content of geo-tagged videos.
We utilize a recent deep-learning based video analysis framework,
termed hidden two-stream networks, to recognize a range of activ-
ities in YouTube videos. This framework is efficient and can run
in real time or faster which is important for recognizing events as
they occur in streaming video or for reducing latency in analyzing
already captured video. This is, in turn, important for using video in
smart-city applications. We perform a series of experiments to show
our approach is able to map activities both spatially and temporally.

CCS CONCEPTS
• Information systems → Spatial-temporal systems; Video
search; • Human-centered computing → Geographic visual-
ization; •Computingmethodologies→Activity recognition
and understanding; Neural networks;
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1 INTRODUCTION
Mapping human activity on a large scale in real time or near real
time is a fundamental yet challenging task in the geographic and
social sciences. It is an essential component for making cities smart,
particularly with regard to resource allocation, disease control,
social interaction, traffic management, etc. There has been work on
using Twitter to geo-visualize human activity on maps [5]. There
has also been work on using geo-tagged images to analyze human
activity [2]. However, ours is the first work to exploit the rich
temporal dimension of videos for activity mapping.

We therefore propose using geo-tagged videos to map human
activity. We consider both the appearance and temporal (dynamic)
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aspects of the videos. This allows more effective activity detection
than using tags/titles or the visual content of images.

Performing activity recognition in video is a challenging prob-
lem. Video data is large which makes real-time or near real-time
analysis difficult. And, video data is very complex. Fortunately,
the field of computer vision has made great progress recently in
high-level video understanding thanks to deep learning. Large-scale
labeled video datasets have been created, allowing deep convolu-
tional neural networks (CNN) to be trained and achieve impressive
performance on activity recognition. We take advantage of this
recent progress to perform, for the first time, spatio-temporal map-
ping of human activity using geo-referenced videos.

This paper bridges activity recognition in video with geographic
knowledge discovery. The salient aspects of the work include:

• Our work is the first to perform spatio-temporal mapping
of human activity using the visual content of geo-tagged
videos.
• We utilize an efficient video analysis framework termed hid-
den two-stream networks. The framework performs activity
recognition at 130fps which allows it to run in real time.
• The video analysis framework is effective, achieving 90 per-
cent accuracy on a 10 class activity classification problem.
• Our framework is flexible. It could easily be adapted to use
geo-referenced videos to map a range of activities that are
important for smart cities such as monitoring public safety,
monitoring traffic, monitoring public health, etc.

2 RELATEDWORK
Large-Scale Geo-Tagged Multimedia The exponential growth
of publicly available geo-referenced multimedia has created a range
of interesting opportunities to learn about our world. At the in-
tersection of geographic information science and computer vision,
large collections of geotagged photos/videos have been used to map
world phenomenon [1], classify land use [17], model landmarks [8],
conduct urban planning, and detect sentiment hotspots [19].

Our work is novel in that it uses a large collection of geo-tagged
videos to map human activity as conveyed through the videos that
ordinary people take. We specifically focus on spatial and spatio-
temporal activity analysis in an urban area.
Visual Geo-localization Geo-localization is the problem of de-
termining where something is. There exists an extensive body of
literature on the large-scale visual geo-localization of images. Video
geo-localization by comparison is relatively less studied. Note that
our goal is not to perform geo-localization. Our videos are already
geo-tagged. Our goal is to perform geographic knowledge discovery
by analyzing the geo-tagged videos.
Video Activity Recognition The field of human action recog-
nition in video has evolved significantly over the past few years.
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Figure 1: Illustration of the hidden two-stream networks
that performs activity recognition using the visual content
of a video. Both streams are end-to-end trainable.

Traditional handcrafted features such as Improved Dense Trajec-
tories (IDT) [6, 11] dominated the field of video analysis for many
years. Subsequent two-stream CNNs [7, 18] outperformed IDT by
pre-computing optical flow and training a separate CNN to encode
the motion information. However, pre-computing optical flow is
computational and storage intensive and prevents traditional two-
stream networks from running in real time. In this work, we utilize
the recent hidden two-stream networks [16] for activity recognition.
Our framework is extremely efficient yet maintains competitive
accuracy with slower approaches which cannot operate in real time.
We compare it for activity recognition with another state-of-the-art
real-time activity model named C3D [10]. The results show the
superiority of our method.

3 METHODOLOGY
The overarching goal of our work is to show that geo-referenced
videos, such as at YouTube, can be used to spatio-temporallymap hu-
man activity on a large scale. We select 8 popular sports, baseball,
basketball, football, golf, racquetball, soccer, swimming and
tennis, as common human activities to map. We also include the
class parade to demonstrate how our approach can trace an event
and the class street fight to show direct application to public safety.
We thus consider 10 human activities in total but this could easily
be extended to others. The fundamental technical problem we now
face is human activity recognition in video. The next few sections
describe our solution to this problem.

3.1 MotionNet
In order to achieve real time activity recognition, we use MotionNet
[14, 16] instead of slower, handcrafted methods to compute optical
flow. The key to using a CNN is to pose optical flow computation
as a learning problem. MotionNet treats motion estimation as an
image reconstruction problem [15, 20] where we seek to learn the
optimal optical flow that allows the current video frame to be con-
structed from the previous one. Formally, given a pair of adjacent
video frames I1 and I2 as input, MotionNet generates a motion
field V . V and I2 are then used to produce the estimate I ′1 using
inverse warping, i.e., I ′1 = T [I2,V ], where T is the inverse warping
function. The goal is to minimize the photometric (pixelwise) error

between I1 and I ′1. Training MotionNet to learn optimal optical flow
involves minimizing the following three objective functions:
• A standard pixelwise reconstruction error function

Lpixel =
1
N

N∑
i, j

ρ (I1 (i, j ) − I2 (i +V
x
i, j , j +V

y
i, j )) (1)

where i and j are the frame numbers and V x and Vy are
the estimated optical flows in the horizontal and vertical
directions. The inverse warping is performed using a spatial
transformer module. We use a robust convex error function,
the generalized Charbonnier penalty ρ (x ) = (x2 + ϵ2)α , to
reduce the influence of outliers.
• A smoothness loss to address the ambiguity of estimating
motion in non-textured regions (the aperture problem)

Lsmooth = ρ (∇V x
x ) + ρ (∇V x

y ) + ρ (∇V
y
x ) + ρ (∇V

y
y ) (2)

where ∇V x
x and ∇V x

y are the gradients of the estimated flow
field V x in the horizontal and vertical directions. Similarly,
∇V

y
x and ∇Vy

y are the gradients of Vy . A generalized Char-
bonnier penalty ρ (x ) is also used.
• A structural similarity (SSIM) loss [13] is calculated as

Lssim =
1
N

∑
(1 − SSIM(I1, I

′
1)) (3)

where SSIM(·) is a standard structural similarity function.
This forces MotionNet to produce flow fields with clear mo-
tion boundaries.

The overall loss is a weighted sum of the pixelwise reconstruction
loss, the pixelwise smoothness loss and the region-based SSIM loss

L = λ1 · Lpixel + λ2 · Lsmooth + λ3 · Lssim (4)

where λ1, λ2 and λ3 weight the relative importance of the different
metrics during training. λ1 and λ3 are set to 1.

3.2 Stacked Temporal Stream
Since MotionNet and the temporal stream are both CNNs, they can
be stacked on top of each other and trained in an end-to-endmanner.
MotionNet takes consecutive video frames as input and outputs
the estimated optical flow. The temporal stream CNN then uses
this flow to predict activity labels. The stacked temporal stream
CNN is later combined with a standard spatial stream CNN as
shown in Figure 1. Following previous literature, the two streams
are combined through weighted average late fusion using a spatial
to temporal ratio of 1:1.5 as in [12].

4 EXPERIMENTS
4.1 Dataset
The dataset we use to train and validate our activity recognition
model contains 10 activity classes. We only need the activity labels
of these videos–we do not need geo-tags. We first leverage existing
datasets including Sports-1M [4], UCF101 [9] and FCVID [3] to
create an initial dataset. This initial dataset is too small and unbal-
anced though for fine-tuning deep CNNs and so we also download
YouTube videos using the activity labels as keywords. Our final
dataset contains 10, 000 videos in total, 1, 000 for each activity class.
This size is of similar order to the UCF101 and ActivityNet 1.3
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Figure 2: Spatial mapping of popular sport in the city of San
Francisco for 2016. (a) Baseball; (b) Basketball; (c) Football;
(d) Golf; (e) Soccer; and (f) Tennis. Four detections are shown
for each sport. This figure is best viewed in color.

datasets which have been shown to be large enough to fine-tune
deep networks. We divide this dataset into training and validation
components using a split ratio of 0.8:0.2.

To perform our spatio-temporal mapping, we download all geo-
tagged YouTube videos using the same keywords within the city of
San Francisco for the year 2016. This results in 265, 477 geo-tagged
videos. Note that these videos are disjoint from the ones used to
train and validate the activity recognition model above.

4.2 Activity Recognition Evaluation
We compare the accuracy and efficiency of our approach with the
popular C3D network. The hidden two-stream networks achieves
over 90.94% accuracy on the 10 class validation dataset at a speed
of 130.56fps. It is about 6% more accurate than C3D (84.57% at
a speed of 390.70fps). C3D is seen to be more efficient but both
can run much faster than real time (30fps). The remainder of the
experiments are performed with the hidden two-stream networks.

4.3 Spatial Sports Mapping
We now apply our framework to the geo-tagged YouTube videos
from San Francisco for 2016. During inference, we sample frames
every one second to reduce computational cost. Figure 2 shows the
locations of videos classified as the six most popular sports. Also
shown are four detections for each sport. We show a sample frame
from the video that resulted in the detection as well as a satellite
image of the location of the video. These results demonstrate that
our approach is able to correctly classify the YouTube videos, and
can use this classification to map where the activities take place.
Observation 1: Our approach is able to locate sports fields and
complexes using the visual content of the geo-tagged videos. Figure
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Figure 3: Temporal analysis of user uploaded parade videos
in the city of San Francisco in year 2016. The y axis indicates
the number of geo-tagged parade videos for each day. The
peaks correspond to the major parades.

Figure 4: Spatial analysis of the 46th San Francisco Pride pa-
rade in 2016. L: official parade route. R: map of classified
videos. Note the correlation.

2(a) contains a concentration of points in the area of AT&T park,
the home of the SF Giants baseball team. We also locate the San
Francisco State University basketball court, George Washington
High School football field, TPC Harding Park golf course, Crocker
Amazon soccer fields, John McLaren Park tennis courts, etc.
Observation 2: The video frames and satellite images are in agree-
ment with the predicted sports and their locations. There is, how-
ever, one interesting exception (the top right example in Figure 2(d))
of a golf video located in downtown. Upon further investigation,
we found this makes sense since there is an indoor driving range
inside the building named Eagle Club indoor golf. The classified
video is an advertisement. This example demonstrates a distinct
advantage that ground-level images have over satellite or aerial
images–they can be used to perform geographic discovery indoors.
Observation 3: Our approach is able to use context to detect where
a sport is played even if it is not occurring at the time the video
was captured or the activity is difficult to discern. For example, in
the top left example in Figure 2(c), the video snippet is an oblique
view of just the football field. And, in the bottom right example in
Figure 2(e), the players are very far from the camera. The ability
of our approach to do this can be attributed to the spatial stream’s
capacity to learn the static appearance of where sports are played.
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Figure 5: Violence detection. L: our predicted street fight
mapping. R: official police record of Assault mapping.

4.4 Spatio-Temporal Parade Mapping
The goal here is to locate specific events, such as a parade, both
spatially and temporally. We first detect all parade videos and tem-
porally group them by date. We then map the videos in a group to
identify the parade route.
Temporal Analysis: We detect a total of 15, 645 parade videos in
San Francisco in 2016. The daily distribution is shown in Figure
3. The peaks correlate with known parades including the Chinese
New Year parade (February 20), the St. Patrick’s Day parade (March
12), the Carnaval Grand parade (May 28), the Pride parade (June
25) and the Italian Heritage parade (October 9).

Closer analysis shows that the videos of a parade tend to be
uploaded after the event, sometimes days later. This is different
from texts or images which tend to be shared during the event. This
is likely because video requires better network connectivity. Also,
users often first edit their videos before uploading them.
Spatial Analysis: We now map the videos of the most popular
parade in San Francisco in 2016 (based on our detections), the 46th
Pride parade. As shown in Figure 4, our mapping results (right)
are strongly correlated with the official parade route (left), from
Market/Beale to Market/8th Street in downtown San Francisco.

4.5 Crime Detection
Detecting criminal activities is important for public safety. We here
demonstrate how our framework can be used to map violence using
YouTube videos. This shows how our framework can generalize to
a range of applications related to smart cities given suitable training
data. We apply our framework to the San Francisco YouTube videos
and detect 7, 784 instances of street fight. The locations of the videos
are shown in Figure 5 left. We notice concentrations of violence in
downtown San Francisco, the Mission District, Hunters Point, etc.
These are known to be high-crime areas. For comparison, we show
the locations of Assault from a San Francisco crime map in Figure
5 right derived from official police records. Our predicted locations
are shown to be correlated with the official records.

We would like to point out how our framework is different and
complementary to using traditional surveillance cameras tomonitor
crime. We use geo-tagged videos from YouTube. The challenge is
that these videos are not taken from the same viewpoint, with the
same camera, with controlled lighting conditions, etc. This makes
our problem much more difficult. However, we are able to leverage

the scale and embedded perspective of the crowd to detect incidents
that might not be captured using surveillance cameras.

5 CONCLUSION
We performed the first investigation into using the visual content
of geo-tagged videos to map human activity. We utilized the recent
hidden two-stream networks to detect 10 different activities in a
large collection of YouTube videos of San Francisco. Our approach
can run in real time which is important for real world applications.
In the future, we plan to investigate whether our framework can
be adapted to detect a range of suspicious activities in surveillance
video such as theft, vandalism, etc. Additional directions include
scaling the mapping to country or continental regions as well as to
more activity classes.

6 ACKNOWLEDGMENTS
We gratefully acknowledge the support of NVIDIA Corporation
through the donation of the Titan X GPU used in this work. This
work was funded in part by a National Science Foundation CA-
REER grant, #IIS-1150115, and a seed grant from the Center for
Information Technology in the Interest of Society (CITRIS).

REFERENCES
[1] D. Crandall, L. Backstrom, D. Huttenlocher, and J. Kleinberg. 2009. Mapping the

World’s Photos. In WWW.
[2] Eva Hauthal and Dirk Burghardt. 2016. Using VGI for Analyzing Activities and

Emotions of Locals and Tourists. In AGILE.
[3] Yu-Gang Jiang, Zuxuan Wu, Jun Wang, Xiangyang Xue, and Shih-Fu Chang.

2015. Exploiting Feature and Class Relationships in Video Categorization with
Regularized Deep Neural Networks. arXiv preprint arXiv:1502.07209 (2015).

[4] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. 2014. Large-scale Video Classification with Convolutional
Neural Networks. In CVPR.

[5] Felix Kling and Alexei Pozdnoukhov. 2012. When a City Tells a Story: Urban
Topic Analysis. In ACM SIGSPATIAL.

[6] Zhenzhong Lan, Yi Zhu, and Alexander G. Hauptmann. 2017. Deep Local Video
Feature for Action Recognition. arXiv preprint arXiv:1701.07368 (2017).

[7] K. Simonyan and A. Zisserman. 2014. Two-Stream Convolutional Networks for
Action Recognition in Videos. NIPS (2014).

[8] Noah Snavely, Steven M. Seitz, and Richard Szeliski. 2008. Modeling the World
from Internet Photo Collections. IJCV (2008).

[9] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. 2012. UCF101: A
Dataset of 101 Human Action Classes From Videos in The Wild. In CRCV-TR-12-
01.

[10] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
2015. Learning Spatiotemporal Features with 3D Convolutional Networks. In
ICCV.

[11] H. Wang and C. Schmid. 2013. Action Recognition with Improved Trajectories.
In ICCV.

[12] Limin Wang, Yuanjun Xiong, Zhe Wang, and Yu Qiao. 2015. Towards Good
Practices for Very Deep Two-Stream ConvNets. arXiv preprint arXiv:1507.02159
(2015).

[13] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. 2004. Image
Quality Assessment: From Error Visibility to Structural Similarity. TIP (2004).

[14] Jason J. Yu, AdamW. Harley, and Konstantinos G. Derpanis. 2016. Back to Basics:
Unsupervised Learning of Optical Flow via Brightness Constancy and Motion
Smoothness. arXiv preprint arXiv:1608.05842 (2016).

[15] Yi Zhu, Zhenzhong Lan, Shawn Newsam, and Alexander G. Hauptmann. 2017.
Guided Optical Flow Learning. arXiv preprint arXiv:1702.02295 (2017).

[16] Yi Zhu, Zhenzhong Lan, Shawn Newsam, and Alexander G. Hauptmann. 2017.
Hidden Two-Stream Convolutional Networks for Action Recognition. arXiv
preprint arXiv:1704.00389 (2017).

[17] Yi Zhu and S. Newsam. 2015. Land Use Classification Using Convolutional Neural
Networks Applied to Ground-Level Images. In ACM SIGSPATIAL.

[18] Yi Zhu and Shawn Newsam. 2016. Depth2Action: Exploring Embedded Depth
for Large-Scale Action Recognition. In ECCV Workshop.

[19] Yi Zhu and S. Newsam. 2016. Spatio-Temporal Sentiment Hotspot Detection
using Geotagged Photos. In ACM SIGSPATIAL.

[20] Yi Zhu and Shawn Newsam. 2017. DenseNet for Dense Flow. In ICIP.


	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 MotionNet
	3.2 Stacked Temporal Stream

	4 Experiments
	4.1 Dataset
	4.2 Activity Recognition Evaluation
	4.3 Spatial Sports Mapping
	4.4 Spatio-Temporal Parade Mapping
	4.5 Crime Detection

	5 Conclusion
	6 Acknowledgments
	References

