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ABSTRACT

Classical approaches for estimating optical flow have achieved
rapid progress in the last decade. However, most of them are
too slow to be applied in real-time video analysis. Due to
the great success of deep learning, recent work has focused
on using CNNs to solve such dense prediction problems. In
this paper, we investigate a new deep architecture, Densely
Connected Convolutional Networks (DenseNet), to learn op-
tical flow. This specific architecture is ideal for the problem
at hand as it provides shortcut connections throughout the
network, which leads to implicit deep supervision. We ex-
tend current DenseNet to a fully convolutional network to
learn motion estimation in an unsupervised manner. Eval-
uation results on three standard benchmarks demonstrate
that DenseNet is a better fit than other widely adopted CNN
architectures for optical flow estimation.

Index Terms— Optical flow estimation, Unsupervised
learning, Convolutional neural network

1. INTRODUCTION

Convolutional Neural Networks (CNNs), due to their im-
mense learning capacity and superior efficiency, have ad-
vanced a variety of computer vision tasks, including optical
flow prediction. Recent work [1, 2] built large-scale synthetic
datasets to train a supervised CNN and show that networks
trained on such unrealistic data still generalize very well to
existing datasets such as Sintel [3] and KITTI [4]. Some other
work [5, 6, 7] designed new objectives like image reconstruc-
tion loss to guide the network learning in an unsupervised
way for motion estimation. Though [1, 2, 5, 6] are totally
different approaches, they all use variants of one architecture,
the “FlowNet Simple” network [1].

FlowNetS is a conventional CNN architecture, consisting
of a contracting part and an expanding part. Given adjacent
frames as input, the contracting part uses a series of convolu-
tional layers to extract high level semantic features, while the
expanding part tries to predict the optical flow at the original
image resolution by successive deconvolutions. In between,
it uses skip connections [8] to provide fine image details from

lower layer feature maps. This generic pipeline, contract, ex-
pand, skip connections, is widely adopted for per-pixel pre-
diction problems, such as semantic segmentation [9], depth
estimation [10], video coloring [11], etc.

However, skip connection is a simple strategy towards
combining coarse semantic features and fine image details;
it is not involved in the learning process. What we desire is to
keep the high frequency image details till the end of the net-
work in order to provide implicit deep supervision. Simply
put, we want to ensure maximum information flow between
layers in the network.

DenseNet [12], a recently proposed CNN architecture, has
an interesting connectivity pattern: every layer is connected
to each other within a dense block. In this case, all layers
can access feature maps from their preceding layers which
encourage heavy feature reuse. As a direct consequence, the
model is more compact and less prone to overfitting. Besides,
each individual layer receives direct supervision from the loss
function through the shortcut paths, which provides implicit
deep supervision. All these good properties make DenseNet
a natural fit for per-pixel prediction problems. There is a con-
current work using DenseNet for semantic segmentation [9],
which achieved state-of-the-art performance without neither
pretraining nor additional post-processing. However, estimat-
ing optical flow is different from semantic segmentation. We
will illustrate the differences in Section 3.

In this paper, we propose to use DenseNet for optical
flow prediction. Our contributions are two-fold. First, we
extend current DenseNet to a fully convolutional network.
Our model is totally unsupervised, and achieves performance
close to supervised approaches. Second, we empirically show
that replacing convolutions with dense blocks in the expand-
ing part yields better performance.

2. METHOD

Given adjacent frames, previous I1 and next I2, our goal
is to learn a model that can predict per-pixel motion field
(U, V ) between the two images. U and V are the horizontal
and vertical displacement. In this section, we first review
the DenseNet architecture, and then outline our unsupervised
learning framework based on a fully convolutional DenseNet.
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Fig. 1. An overview of our unsupervised learning framework based on dense blocks (DB). “Down” is the transition down layer,
and “Up” is the transition up layer. The orange colored arrows indicate the skip connections. See more details in Section 2.2.

2.1. DenseNet Review

Traditional CNNs, such as FlowNetS, calculate the output of
lth layer by applying nonlinear transformation H to the pre-
vious layer’s output xl−1,

xl = Hl(xl−1). (1)

Through consecutive convolution and pooling, the network
will achieve spatial invariance and obtain coarse semantic fea-
tures in the top layers. However, fine image details tend to
disappear in the very top of the network.

To improve information flow between layers, DenseNet
[12] provides a simple connectivity pattern: the lth layer re-
ceives the features maps of all preceding layers as inputs:

xl = Hl([x0, x1, ..., xl−1]) (2)

where [x0, x1, ..., xl−1] is a single tensor constructed by con-
catenation of the previous layers’ output feature maps. In this
manner, even the last layer can have access to the input in-
formation of the first layer. And all layers receive direct su-
pervision from the loss function through the shortcut connec-
tions. Hl(·) is a composite function of four consecutive oper-
ations, batch normalization (BN), leaky rectified linear units
(LReLU), a 3 × 3 convolution and dropout. We denote such
composite function as one layer.

In our experiments, the DenseNet in the contracting part
has four dense blocks, each of which has four layers. Between
the dense blocks, there are transition down layers consisting
of a 1 × 1 convolution followed by a 2 × 2 max pooling.
We compare it with three other popular architectures, namely
FlowNetS [1], VGG16[13] and ResNet18 [14] in Section 3.3.

2.2. Fully Convolutional DenseNet

Classical expanding uses series of convolution, deconvolu-
tion, and skip connections to recover the spatial resolution in

order to get the per-pixel prediction results. Due to the good
properties of DenseNet, we propose to replace the convolu-
tions with dense blocks as well during expanding.

However, if we follow the same dense connectivity pat-
tern, the number of feature maps after each dense block will
keep increasing. Considering the resolution of feature maps
also increase during expanding, the computational cost will
be intractable for current GPUs. Thus, for a dense block in
the expanding part, we do not concatenate input to its final
output. For example, if the input has k0 channels, the output
of an L layer dense block will have a number of Lk feature
maps. k is the growth rate of a DenseNet, defining the number
of feature maps each layer produces. Note that dense blocks
in the contracting part will output k0 + Lk feature maps.

For symmetry, we also introduce four dense blocks in the
expanding part, each of which has four layers. Bottom layer
feature maps at the same resolution are concatenated through
skip connections. Between the dense blocks, there are tran-
sition up layers composed of two 3 × 3 deconvolution with
a stride of 2. One is for upsampling of the estimated optical
flow, the other is for upsampling of the feature maps.

2.3. Unsupervised Motion Estimation

Supervised approaches adopt synthetic datasets for CNN
to learn optical flow prediction. However, synthetic mo-
tions/scenes are quite different from real world ones, thus
limiting the generalizability of the learned model. Besides,
even constructing synthetic dataset requires a lot of manual
effort [3]. Hence, unsupervised learning is an ideal option for
the naturally ill-conditioned motion estimation problem.

Recall that the unsupervised approach [6] treats the opti-
cal flow estimation as an image reconstruction problem. The
intuition is that if we can use the predicted flow and the next
frame to reconstruct the previous frame, our network is learn-
ing useful representations about the underlying motions. To
be specific, we denote the reconstructed previous frame as I ′1.



The goal is to minimize the photometric error between the
previous frame I1 and the inverse warped next frame I ′1:

Lreconst =
1

N

N∑
i,j

ρ(I1(i, j)− I ′1(i, j)). (3)

Here I ′1(i, j) = I2(i + Ui,j , j + Vi,j). N is the total number
of pixels. The inverse warp is done by using spatial trans-
former modules [15] inside the CNN. We use a robust convex
error function, the generalized Charbonnier penalty ρ(x) =
(x2 + ε2)α, to reduce the influence of outliers. This recon-
struction loss is similar to the brightness constancy objective
in classical variational formulations.

An overview of our unsupervised learning framework
based on DenseNet is illustrated in Fig. 1. Our network has
a total of 53 layers with a growth rate of 12. But due to
parameter efficiency of dense connectivity, our model only
has 2M parameters, while FlowNetS has 38M.

3. EXPERIMENTS

3.1. Datasets

Flying Chairs [1] is a synthetic dataset designed specifically
for training CNNs to estimate optical flow. It is created by
applying affine transformations to real images and synthet-
ically rendered chairs. The dataset contains 22,872 image
pairs: 22,232 training and 640 test samples according to the
standard evaluation split.
MPI Sintel [3] is also a synthetic dataset derived from a short
open source animated 3D movie. There are 1,628 frames,
1,064 for training and 564 for testing. In this work, we only
report performance on its final pass because it contains suffi-
ciently realistic scenes including natural image degradations.
KITTI Optical Flow 2012 [4] is a real world dataset col-
lected from a driving platform. It consists of 194 training im-
age pairs and 195 test pairs with sparse ground truth flow. We
report the average endpoint error (EPE) on the entire image.

Since the dataset size of Sintel/KITTI is relatively small,
we first pretrain our network on Chairs, and then fine tune it
to report their performance. Note that the fine tuning here is
also unsupervised, we are not using ground truth flow from
Sintel/KITTI.

3.2. Implementation

During unsupervised training, we calculate reconstruction
loss for each expansion. There are 5 expansions in our net-
work, resulting in 5 losses. We use the same loss weights as
in [6]. The generalized Charbonnier parameter α is 0.25 and
ε is 0.001. The models are trained using Adam optimization
with default parameters, β1 = 0.9 and β2 = 0.999. The
initial learning rate is set to 10−5, and then divided by half
every 100k. We end our training at 600k iterations. We apply
the same data augmentations as in [6] to prevent overfitting.

Method Chairs Sintel KITTI
UnsupFlowNet [6] 5.30 11.19 12.4

VGG16 [13] 5.47 11.35 12.7
ResNet18 [14] 5.22 10.98 12.3
DenseNet [12] 5.01 10.66 12.1

DenseNet + Dense Upsampling 4.73 10.07 11.6
DenseNet + Dense Upsampling (Deeper) 6.65 13.46 14.0

Table 1. Optical flow estimation results on the test set of
Chairs, Sintel and KITTI. All performances are reported us-
ing average EPE, lower is better. Top: Comparison of dif-
ferent architectures with classical upsampling. Bottom: Our
proposed DenseNet with dense block upsampling.

3.3. Results and Discussion

We have three observations given the results in Table 1.
Observation 1: As shown in top section of Table 1, all four
popular architectures perform reasonably well on optical flow
prediction. The reason why VGG16 performs the worst is that
multiple pooling layers may lose the image details. On the
contrary, ResNet18 only has one pooling layer in the begin-
ning, so it performs better than both VGG16 and FlowNetS.
Interestingly, DenseNet also has multiple pooling layers, but
due to dense connectivity, we don’t lose fine appearance in-
formation. Thus, as expected, DenseNet performs the best
with the least number of parameters.

Inspired by success of using deeper models, we also im-
plement a network with five dense blocks in both the con-
tracting and expanding parts, where each block has ten layers.
However, as shown in the last row of Table 1, the performance
is much worse due to overfitting. This may indicate that op-
tical flow is a low-level vision problem, that doesn’t need a
substantially deeper network to achieve better performance.
Observation 2: Using dense blocks during expanding is ben-
eficial. In Table 1, DenseNet with dense upsampling achieves
better performance on all three benchmarks than DenseNet
with classical upsampling, especially on Sintel. As Sintel has
much more complex context than Chairs and KITTI, it may
benefit more from the implicit deep supervision. This con-
firms that using dense blocks instead of a single convolution
can maintain more information during the expanding process,
which leads to better flow estimates.
Observation 3: One of the advantages of DenseNet is that it
is less prone to overfitting. The authors in [12] have shown
that it can perform well even when there is no data augmenta-
tion compared to other network architectures. We investigate
this by directly training from scratch on Sintel, without pre-
training using Chairs. We built the training dataset using im-
age pairs from both the final and clean passes of Sintel. When
we use the same implementation and training strategies, the
flow estimation performance is 10.3, which is very close to
10.07. One possible reason for such robustness is because
of the model compactness and implicit deep supervision pro-
vided by DenseNet. This is ideal for optical flow estimation
since most benchmarks have limited training data.
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Fig. 2. Visual examples of predicted optical flow from different methods. Top two are from Sintel, and bottom two from KITTI.

3.4. Comparison to State-of-the-arts

In this section, we compare our proposed method to recent
state-of-the-art approaches. We only consider approaches that
are fast because optical flow is often used in time sensitive
applications. We evaluated all CNN-based approaches on a
workstation with Intel Core I7 with 4.00GHz and a Nvidia
Titan X GPU. For classical approaches, we just use their re-
ported runtime.

As shown in Table 2, although unsupervised learning still
lags behind supervised approaches [1], our network based on
fully convolutional DenseNet shortens the performance gap
and achieves lower EPE on three standard benchmarks than
state-of-the-art unsupervised approach [6]. Comparing to [5],
we get higher EPE on Sintel because they use variational re-
finement technique.

We also show some visual examples in Figure 2. We can
see that supervised FlowNetS can estimate optical flow close
to ground truth, while UnsupFlowNet struggles to maintain
fine image details and generates very noisy flow estimation.
Due to dense connectivity pattern, our proposed method can
produce much smoothier flow than UnsupFlowNet, and re-
cover the high frequency image details, such as human bound-
aries and car shapes.

Therefore, we demonstrate that DenseNet is a better fit for
dense optical flow prediction, both quantitatively and qualita-
tively. However, by exploring different network architectures,
we found that existing networks perform similarly on predict-
ing optical flow. We may need to design new operators like
the correlation layer in [1], or novel architectures [16, 17] to
learn motions between adjacent frames in future work. The
model should handle both large and small displacement, as
well as fine motion boundaries. Another concern of this work
is that DenseNet has a large memory bandwidth which may
limit its potential applications.

Method Chairs Sintel KITTI Runtime
EPPM [18] − 8.38 9.2 0.25

PCA-Flow [19] − 8.65 6.2 0.19∗

DIS-Fast [20] − 10.13 14.4 0.02∗

FlowNetS [1] 2.71 8.43 9.1 0.06
USCNN [5] − 8.88 − −

UnsupFlowNet [6] 5.30 11.19 12.4 0.06
Ours 4.73 10.07 11.6 0.13

Table 2. State-of-the-art comparison, runtime is reported
in seconds per frame. Top: Classical approaches. Bottom:
CNN-based approaches. ∗ indicates the algorithm is evalu-
ated using CPU, while the rest are on GPU.

4. CONCLUSION

In this paper, we extend the current DenseNet architecture
to a fully convolutional network, and use image reconstruc-
tion loss as guidance to learn motion estimation. Due to the
dense connectivity pattern, our proposed method achieves
better flow accuracy than previous best unsupervised ap-
proach [6], and shortens the performance gap to supervised
ones. Besides, our model is totally unsupervised. Thus we
can experiment with large-scale video corpora in future work,
to learn non-rigid real world motion patterns. Through com-
parison of popular CNN architectures, we found that it is
important to design novel operators or networks for optical
flow estimation instead of relying on existing architectures
for image classification.
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