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Abstract. This paper performs the first investigation into depth for
large-scale human action recognition in video where the depth cues are
estimated from the videos themselves. We develop a new framework called
depth2action and experiment thoroughly into how best to incorporate
the depth information. We introduce spatio-temporal depth normaliza-
tion (STDN) to enforce temporal consistency in our estimated depth
sequences. We also propose modified depth motion maps (MDMM) to
capture the subtle temporal changes in depth. These two components
significantly improve the action recognition performance. We evaluate
our depth2action framework on three large-scale action recognition video
benchmarks. Our model achieves state-of-the-art performance when com-
bined with appearance and motion information thus demonstrating that
depth2action is indeed complementary to existing approaches.
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1 Introduction

Human action recognition in video is a fundamental problem in computer vision
due to its increasing importance for a range of applications such as analyzing
human activity, video search and recommendation, complex event understand-
ing, etc. Much progress has been made over the past several years by employing
hand-crafted local features such as improved dense trajectories (IDT) [39] or
video representations that are learned directly from the data itself using deep
convolutional neural networks (ConvNets). However, starting with the seminal
two-stream ConvNets method [31], approaches have been limited to exploit-
ing static visual information through frame-wise analysis and/or translational
motion through optical flow or 3D ConvNets. Further increase in performance
on benchmark datasets has been mostly due to the higher capacity of deeper
networks [44,43,23,46] or to recurrent neural networks which model long-term
temporal dynamics [24,47,2].

Intuitively, depth can be an important cue for recognizing complex human
actions. Depth information can help differentiate between action classes that are
otherwise very similar especially with respect to appearance and translational
motion in the red-green-blue (RGB) domain. For instance, the “CricketShot”
and “CricketBowling” classes in the UCF101 dataset are often confused by the

ar
X

iv
:1

60
8.

04
33

9v
1 

 [
cs

.C
V

] 
 1

5 
A

ug
 2

01
6



2 Yi Zhu and Shawn Newsam

(a)

(b)

Fig. 1: (a) “CricketBowling” and (b) “CricketShot”. Depth information about the
bowler and the batters is key to telling these two classes apart. Our proposed
depth2action approach exploits the depth information that is embedded in the
videos to perform large-scale action recognition. This figure is best viewed in
color

state-of-the-art models [44,46]. This makes sense because, as shown in Fig. 1,
these classes can be very similar with respect to static appearance, human-object
interaction, and in-plane human motion patterns. Depth information about the
bowler and the batters is key to telling these two classes apart.

Previous work on depth for action recognition [3,40,50,45] uses depth infor-
mation obtained from depth sensors such as Kinect-like devices and thus is not
applicable to large-scale action recognition in RGB video. We instead estimate
the depth information directly from the video itself. This is a difficult problem
which results in noisy depth sequences and so a major contribution of our work is
how to effectively extract the subtle but informative depth cues. To our knowl-
edge, our work is the first to perform large-scale action recognition based on
depth information embedded in the video data.

Our novel contributions are as follows: (i) We introduce depth2action, a novel
approach for human action recognition using depth information embedded in
videos. It is shown to be complementary to existing approaches which exploit
spatial and translational motion information and, when combined with them,
achieves state-of-the-art performance on three popular benchmarks. (ii) We pro-
pose STDN to enforce temporal consistency and MDMM to capture the subtle
temporal depth cues in noisy depth sequences. (iii) We perform a thorough in-
vestigation on how best to extract and incorporate the depth cues including:
image- versus video-based depth estimation; multi-stream 2D ConvNets versus
3D ConvNets to jointly extract spatial and temporal depth information; Con-
vNets as feature extractors versus end-to-end classifiers; early versus late fusion
of features for optimal prediction; and other design choices.
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Fig. 2: Depth2Action framework. Top: Our depth two-stream model. Depth
maps are estimated on a per-frame basis and input to a depth-spatial net. Mod-
ified depth motion maps (MDMMs) are derived from the depth maps and input
to a depth-temporal net. Features are extracted, concatenated and input to two
support vector machine (SVM) classifiers, to obtain the final prediction scores.
Bottom: Our depth-C3D framework which is similar except the depth maps are
input to a single depth-C3D net which jointly captures spatial and temporal
depth information. This figure is best viewed in color

2 Related Work

There exists an extensive body of literature on human action recognition. We
review only the most related work.
Deep ConvNets: Improved dense trajectories [39] dominated the field of video
analysis for several years until the two-stream ConvNets architecture introduced
by Simonyan and Zisserman [31] achieved competitive results for action recog-
nition in video. In addition, motivated by the great success of applying deep
ConvNets in image analysis, researchers have adapted deep architectures to the
video domain either for feature representation [43,48,37,52,35] or end-to-end pre-
diction [13,44,24,47].

While our framework shares some structural similarity with these works, it is
distinct and complementary in that it exploits depth for action recognition. All
the works above are based on appearance and translational motion in the RGB
domain. We note there has been some work that exploits audio information [26];
however, not all videos come with audio and our approach is complementary to
this work as well.
RGB-D Based Action Recognition: There is previous work on action recog-
nition in RGB-D data. Chen et al. [3] use depth motion maps (DMM) for real-
time human action recognition. Yang and Tian [50] cluster hypersurface normals
in depth sequences to form a super normal vector (SNV) representation. Very
recently, Wang et al. [45] apply weighted hierarchical DMM and deep ConvNets
to achieve state-of-the-art performance on several benchmarks. Our work is dif-
ferent from approaches that use RGB-D data in several key ways:
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(i) Depth information source and quality : These methods use depth infor-
mation obtained from depth sensors. Besides limiting their applicability, this
results in depth sequences that have much higher fidelity than those which can
be estimated from RGB video. Our estimated depth sequences are too noisy
for recognition techniques designed for depth-sensor data. Taking the difference
between consecutive frames in our depth sequences only amplifies this noise
making techniques such as STOP features [38], SNV representations [50], and
DMM-based framework [3,45], for example, ineffective.

(ii) Benchmark datasets: RGB-D benchmarks such as MSRAction3D [19],
MSRDailyActivity3D [42], MSRGesture3D [41], MSROnlineAction3D [51] and
MSRActionPairs3D [27] are much more limited in terms of the diversity of ac-
tion classes and the number of samples. Further, the videos often come with
other meta data like skeleton joint positions. In contrast, our benchmarks such
as UCF101 contain large numbers of action classes and the videos are less con-
strained. Recognition is made more difficult by the large intra-class variation.

We note that we take inspiration from [49,45] in designing our modified
DMMs. The approaches in these works use RGB-D data and are not appropriate
for our problem, though, since they construct multiple depth sequences using
different geometric projections, and our videos are too long and our estimated
depth sequences too noisy to be characterized by a single DMM.

In summary, our depth2action framework is novel compared to previous work
on action recognition. An overview of our framework can be found in Fig. 2.

3 Methodology

Since our videos do not come with associated depth information, we need to
extract it directly from the RGB video data. We consider two state-of-the-art
approaches to efficiently extract depth maps from the individual video frames.
We enforce temporal consistency in these sequences through inter-frame nor-
malization. We explore different ConvNets architectures to extract spatial and
temporal depth cues from the normalized depth sequences.

3.1 Depth Extraction

Extracting depth maps from video has been studied for some time now [53,34,29].
Most approaches, however, are not applicable since they either require stereo
video or additional information such as geometric priors. There are a few works
[22] which extract depth maps from monocular video alone but they are compu-
tationally too expensive which does not scale to problems like ours.

We therefore turn to frame-by-frame depth extraction and enforce tempo-
ral consistency through a normalization step. Depth from images has made
much progress recently [20,1,14,4] and is significantly more efficient for extract-
ing depth from video. We consider two state-of-the-art approaches to extract
depth from images, [20] and [4], based on their accuracy and efficiency.
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(a)

(b)

(c)

(d)

Fig. 3: Depth maps estimated from the video v ThrowDiscus g05 c02.avi in the
UCF101 dataset. (a): raw RGB frames; (b): depth maps extracted using [20]; (c):
depth maps extracted using [4]; (d): the absolute difference between consecutive
depth maps in (c). Blue indicates smaller values and yellow larger ones. This
figure is best viewed in color

Deep Convolutional Neural Fields (DCNF) [20]: This work jointly ex-
plores the capacity of deep ConvNets and continuous CRFs to estimate depth
from an image. Depth is predicted through maximum a posterior (MAP) in-
ference which has a closed-form solution. We apply the implementation kindly
provided by the authors [20] but discard the time consuming “inpainting” pro-
cedure which is not important for our application. Our modified implementation
takes only 0.09s per frame to extract a depth map.
Multi-scale Deep Network [4]: Unlike DCNF above, this method does not
utilize super-pixels and thus results in smoother depth maps. It uses a sequence of
scales to progressively refine the predictions and to capture image details both
globally and locally. Although the model can also be used to predict surface
normals and semantic labels within a common ConvNets architecture, we only
use it to extract depth maps. Our modified implementation takes only 0.01s per
frame to extract a depth map.

Fig. 3 visually compares the per-frame depths maps generated by the two
approaches. We observe that 1) [4] (Fig. 3c) results in smoother maps since it
does not utilize super-pixels like [20] (Fig. 3b), and 2) [4] preserves structural
details, such as the border between the sky and the trees, better than [20] due
to its multi-scale refinement. An ablation study (see supplemental materials)
shows [4] results in better action recognition performance so we use it to extract
per-frame depth maps for the rest of the paper.

3.2 Spatio-Temporal Depth Normalization

We now have depth sequences. While this makes our problem similar to work on
action recognition from depth-sensor data such as [45], these methods are not
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applicable for a number of reasons. First, their inputs are point clouds which
allows them to derive depth sequences from multiple perspectives for a single
video as well as augment their training data through virtual camera movement.
We only have a single fixed viewpoint. Second, their depth information has much
higher fidelity since it was acquired with a depth sensor. Ours is prohibitively
noisy to use a single 2D depth motion map to represent an entire video as is
done in [45]. We must develop new methods.

The first step is to reduce the noise by enforcing temporal consistency under
the assumption that depth does not change significantly between frames. We
introduce a temporal normalization scheme which constrains the furthest part
of the scene to remain approximately the same throughout a clip. We find this
works best when applied separately to three horizontal spatial windows and so
we term the method spatio-temporal depth normalization (STDN). Specifically,
let x be a frame. We then take n consecutive frames [xt1,xt2, . . . ,xtn] to form a
volume (clip) which is divided spatially into three equal-sized subvolumes that
represent the top, middle, and bottom parts [25]. We take the 95th percentile
of the depth distribution as the furthest scene element in each subvolume. The
95th percentile of the corresponding window in each frame is then linearly scaled
to equal this furthest distance.

We also investigated other methods to enforce temporal consistency including
intra-frame normalization, temporal averaging (uniform as well as Gaussian)
with varying temporal window sizes, and warping. None performed as well as
the proposed STDN (see supplemental materials).

3.3 ConvNets Architecture Selection

Recent progress in action recognition based on ConvNets can be attributed to
two models: a two-stream approach based on 2D ConvNets [31,44] which sep-
arately models the spatial and temporal information, and 3D ConvNets which
jointly learn spatio-temporal features [11,37]. These models are applied to RGB
video sequences. We explore and adapt them for our depth sequences.

2D ConvNets: In [31], the authors compute a spatial stream by adapting 2D
ConvNets from image classification [15] to action recognition. We do the same
here except we use depth sequences instead of RGB video sequences. We term
this our depth-spatial stream to distinguish it from the standard spatial stream
which we will refer to as RGB-spatial stream for clarity. Our depth-spatial stream
is pre-trained on the ILSVRC-2012 dataset [30] with the VGG-16 implementa-
tion [32] and fine-tuned on our depth sequences. [31] also computes a temporal
stream by applying 2D ConvNets to optical flow derived from the RGB video.
We could similarly compute optical flow from our depth sequences but this would
be redundant (and very noisy) so we instead propose a different depth-temporal
stream below in section 3.4.

3D ConvNets: In [11,37], the authors show that 2D ConvNets “forget” the
temporal information in the input signal after every convolution operation. They
propose 3D ConvNets which analyze sets of contiguous video frames organized
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as clips. We apply this approach to clips of depth sequences. We term this depth-
C3D to distinguish it from the standard 3D ConvNets which we will refer to as
RGB-C3D for clarity. Our depth-C3D net is pre-trained using the Sports-1M
dataset [13] and fine-tuned on our depth sequences.

3.4 Depth-Temporal Stream

Here, we look to augment our depth-spatial stream with a depth-temporal stream.
We take inspiration from work on action recognition from depth-sensor data and
adapt depth motion maps [49] to our problem. In [49], a single 2D DMM is com-
puted for an entire sequence by thresholding the difference between consecutive
depth maps to get per-frame (binary) motion energy and then summing this en-
ergy over the entire video. A 2D DMM summarizes where depth motion occurs.

We instead calculate the motion energy as the absolute difference between
consecutive depth maps without thresholding in order to retain the subtle motion
information embedded in our noisy depth sequences. We also accumulate the
motion energy over clips instead of entire sequences since the videos in our
dataset are longer and less-constrained compared to the depth-sensor sequences
in [19,27,42,41,51] and so our depth sequences are too noisy to be summarized
over long periods. In many cases, the background would simply dominate.

We compute one modified depth motion map (MDMM) for a clip of N depth
maps as

MDMMtstart =

tstart+N∑
tstart

|maptstart+1 −maptstart |, (1)

where tstart is the first frame of the clip, N is the duration of the clip, and
mapt is the depth map at frame t. Multiple MDMMs are computed for each
video. Each MDMM is then input to a 2D ConvNet for classification. We term
this our depth-temporal stream. We combine it with our depth-spatial stream to
create our depth two-stream (see Fig. 2). Similar to the depth-spatial stream,
the depth-temporal stream is pre-trained on the ILSVRC-2012 dataset [30] with
the VGG-16 network [32] and fine-tuned on the MDMMs.

We also consider a simpler temporal stream by taking the absolute difference
between adjacent depth maps and inputting this difference sequence to a 2D
ConvNet. We term this our baseline depth-temporal stream. Fig. 3d shows an
example sequence of this difference. It does a good job at highlighting changes
in the depth despite the noisiness of the image-based depth estimation.

3.5 ConvNets: Feature Extraction or End-to-End Classification

The ConvNets in our depth two-stream and depth-C3D models default to end-to-
end classifiers. We investigate whether to use them instead as feature extractors
followed by SVM classifiers. This also allows us to investigate early versus late
fusion. We use our depth-spatial stream for illustration.

Features are extracted from two layers of our fine-tuned ConvNets. We ex-
tract the activations of the first fully-connected layer (fc6) on a per-frame basis.
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These are then averaged over the entire video and L2-normalized to form a
4096-dim video-level descriptor. We also extract activations from the convolu-
tional layers as they contain spatial information. We choose the conv5 layer,
whose feature dimension is 7 × 7 × 512 (7 is the size of the filtered images of
the convolutional layer and 512 is the number of convolutional filters). By con-
sidering each convolutional filter as a latent concept, the conv5 features can be
converted into 72 latent concept descriptors (LCD) [48] of dimension 512. We
also adopt a spatial pyramid pooling (SPP) strategy [7] similar to [48]. We apply
principle component analysis (PCA) to de-correlate and reduce the dimension
of the LCD features to 64 and then encode them using vectors of locally aggre-
gated descriptors (VLAD) [10]. This is followed by intra- and L2-normalization
to form a 16384-dim video-level descriptor.

Early fusion consists of concatenating the fc6 and conv5 features for input to
a single multi-class linear SVM classifier [5] (see Fig. 2). Late fusion consists of
feeding the features to two separate SVM classifiers and computing a weighted
average of their probabilities. The optimal weights are selected by grid-search.

4 Experiments

The goal of our experiments is two-fold. First, to explore the various design op-
tions described in section 3 Methodology. Second, to show that our depth2action
framework is complementary to standard approaches to large-scale action recog-
nition based on appearance and translational motion and achieves state-of-the-
art results when combined with them.

4.1 Datasets

We perform experiments on three widely-used publicly-available action recogni-
tion benchmark datasets, UCF101 [33], HMDB51 [16], and ActivityNet [8].

UCF101 is composed of realistic action videos from YouTube. It contains
13320 videos in 101 action classes. It is one of the most popular benchmark
datasets because of its diversity in terms of actions and the presence of large
variations in camera motion, object appearance and pose, object scale, view-
point, cluttered background, illumination conditions, etc. HMDB51 is com-
posed of 6766 videos in 51 action classes extracted from a wide range of sources.
It contains both original videos as well as stabilized ones, but we only use the
original videos. Both UCF101 and HMDB51 have a standard three split eval-
uation protocol and we report the average recognition accuracy over the three
training and test splits. As suggested by the authors in [8], we use ActivityNet
release 1.2 for our experiments due to the noisy crowdsourced labels in release
1.1. The second release consists of 4819 training, 2383 validation, and 2480 test
videos in 100 activity classes. Though the number of videos and classes are sim-
ilar to UCF101, ActivityNet is a much more challenging benchmark because it
has greater intra-class variance and consists of longer, untrimmed videos. The
evaluation metric we used in this paper is top-1 accuracy for all three datasets.
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Table 1: Recognition performance of our proposed configurations on three bench-
mark datasets. (a): Our spatio-temporal depth normalization (STDN) indicated
by (N) is shown to improve performance for all configurations on all datasets.
(b): Using the ConvNets to extract features is better than using them as end-
to-end classifiers. Also, early fusion of features is better than late fusion of SVM
probabilities. See the text for discussion on depth two-stream versus depth-C3D

(a) Effectiveness of STDN

Model UCF101 HMDB51 ActivityNet

Depth-Spatial 58.8% 37.9% 35.9%
Depth-Spatial (N) 59.1% 38.3% 36.4%

Depth-Temporal Baseline 61.8% 40.6% 38.2%
Depth-Temporal Baseline (N) 63.3% 42.0% 39.8%

Depth-Temporal 63.9% 42.6% 39.7%
Depth-Temporal (N) 65.1% 43.5% 40.9%
Depth Two-Stream 65.6% 44.2% 42.7%

Depth Two-Stream (N) 67.0% 45.4% 44.2%

Depth-C3D 61.7% 40.9% 45.9%
Depth-C3D (N) 63.8% 42.8% 47.4%

(b) Features or End-to-End Classifier

Model UCF101 HMDB51 ActivityNet

Depth Two-Stream 67.0% 45.4% 44.2%
Depth Two-Stream fc6 68.2% 46.5% 45.3%

Depth Two-Stream conv5 70.1% 48.2% 47.0%
Depth Two-Stream Early 72.5% 49.7% 49.6%
Depth Two-Stream Late 70.9% 48.9% 48.7%

Depth-C3D 63.8% 42.8% 47.4%
Depth-C3D fc6 64.9% 43.9% 47.9%

Depth-C3D conv5b 66.7% 45.0% 49.1%
Depth-C3D Early 69.5% 46.6% 52.1%
Depth-C3D Late 67.8% 45.7% 51.0%

4.2 Implementation Details

We use the Caffe toolbox [12] to implement the ConvNets. The network weights
are learned using mini-batch stochastic gradient descent (256 frames for two-
stream ConvNets and 30 clips for 3D ConvNets) with momentum (set to 0.9).

Depth Two-Stream: We adapt the VGG-16 architecture [32] and use Ima-
geNet models as the initialization for both the depth-spatial and depth-temporal
net training. As in [44], we adopt data augmentation techniques such as corner
cropping, multi-scale cropping, horizontal flipping, etc. to help prevent overfit-
ting, as well as high dropout ratios (0.9 and 0.8 for the fully connected layers).
The input to the depth-spatial net is the per-frame depth maps, while the in-
put to the depth-temporal net is either the depth difference between adjacent
frames (in the baseline case) or the MDMMs. For generating the MDMMs, we
set N in equation 1 to 10 frames as a subvolume. For the depth-spatial net, the
learning rate decreases from 0.001 to 1/10 of its value every 15K iterations, and
the training stops after 66K iterations. For the depth-temporal net, the learning
rate starts at 0.005, decreases to 1/10 of its value every 20K iterations, and the
training stops after 100K iterations.

Depth-C3D: We adopt the same architecture as in [37]. The Depth-C3D net is
pre-trained on the Sports-1M dataset [13] and fine-tuned on estimated depth se-
quences. During fine-tuning, the learning rate is initialized to 0.005, decreased to
1/10 of its value every 8K iterations, and the training stops after 34K iterations.
Dropout is applied with a ratio of 0.5.

Note that since the number of training videos in the HMDB51 dataset is
relatively small, we use ConvNets fine-tuned on UCF101, except for the last
layer, as the initialization (for both 2D and 3D ConvNets). The fine-tuning
stage starts with a learning rate of 10−5 and converges in one epoch.
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4.3 Results

Effectiveness of STDN: Table 1(a) shows the performance gains due to our
proposed normalization. STDN improves recognition performance for all ap-
proaches on all datasets. The gain is typically around 1-2%. We set the nor-
malization window (n in section 3.2) to 16 frames for UCF101 and ActivityNet,
and 8 frames for HMDB51. We further observe that (i) Depth-C3D benefits
from STDN more than depth two-stream. This is possibly because the input to
depth-C3D is a 3D volume of depth sequences while the input to depth two-
stream is the individual depth maps. Temporal consistency is important for the
3D volume. (ii) Depth-temporal benefits from STDN more than depth-spatial.
This is expected since the goal of the normalization is to improve the temporal
consistency of the depth sequences and only the depth-temporal stream “sees”
multiple depth-maps at a time. From now on, all results are based on depth
sequences that have been normalized.
Depth Two-Stream versus Depth-C3D: As shown in Table 1(a), depth two-
stream performs better than depth-C3D for UCF101 and HMDB51, while the
opposite is true for ActivityNet. This suggests that depth-C3D may be more
suitable for large-scale video analysis. Though the second release of ActivityNet
has a similar number of action clips as UCF101, in general, the video duration
is much (30 times) longer than that of UCF101. Similar results for 3D Con-
vNets versus 2D ConvNets was observed in [21]. The computational efficiency
of depth-C3D also makes it more suitable for large-scale analysis. Although our
depth-temporal net is much faster than the RGB-temporal net (which requires
costly optical flow computation), depth-two stream is still significantly slower
than depth-C3D. We therefore recommend using depth-C3D for large-scale ap-
plications.
ConvNets for Feature Extraction versus End-to-End Classification:
Table 1(b) shows that treating the ConvNets as feature extractors performs sig-
nificantly better than using them for end-to-end classification. This agrees with
the observations of others [2,37,54]. We further observe that the VLAD encoded
conv5 features perform better than fc6. This improvement is likely due to the
additional discriminative power provided by the spatial information embedded
in the convolutional layers. Another attractive property of using feature repre-
sentations is that we can manipulate them in various ways to further improve the
performance. For instance, we can employ different (i) encoding methods: Fisher
vector [25], VideoDarwin [6]; (ii) normalization techniques: rank normalization
[18]; and (iii) pooling methods: line pooling [54], trajectory pooling [43,54], etc.
Early versus Late Fusion: Table 1(b) also shows that early fusion of features
through concatenation performs better than late fusion of SVM probabilities.
Late fusion not only results in a performance drop of around 1.0% but also re-
quires a more complex processing pipeline since multiple SVM classifiers need to
be trained. UCF101 benefits from early fusion more than the other two datasets.
This might be due to the fact that UCF101 is a trimmed video dataset and so
the content of individual videos varies less than in the other two datasets. Early
fusion of multiple layers’ activations is typically more robust to noisy data.
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(a)

RGB Frame RGB-Spatial-conv5 Optical Flow RGB-Temporal-conv5

Depth Map Depth-Spatial-conv5 Modified DMM Depth-Temporal-conv5

RGB Frame RGB-Spatial-conv5 Optical Flow RGB-Temporal-conv5

Depth Map Depth-Spatial-conv5 Modified DMM Depth-Temporal-conv5

(b)

Fig. 4: (a) Recognition results on the first split of UCF101. Plot showing the
classes for which our proposed depth2action framework (yellow) outperforms
RGB-spatial (blue) and RGB-temporal (green) streams. (b) Visualizing the con-
volutional feature maps of four models: RGB-spatial, RGB-temporal, depth-
spatial, and depth-temporal. Pairs of inputs and resulting feature maps are
shown for each model for two actions, “CriketBowling” and “ThrowDiscus”.
This figure is best viewed in color

Depth2Action: We thus settle on our proposed depth2action framework. For
medium-scale video datasets like UCF101 and HMDB51, we perform early fusion
of conv5 and fc6 features extracted using a depth two-stream configuration. For
large-scale video datasets like ActivityNet, we perform early fusion of conv5b
and fc6 features extracted using a depth-C3D configuration. These two models
are shown in Fig. 2.

4.4 Discussion

Class-Specific Results: We investigate the specific classes for which depth
information is important. To do this, we compare the per-class performance
of our depth2action framework with standard methods that use appearance
and translational motion in the RGB domain. We first compute the perfor-
mances of an RGB-spatial stream which takes the RGB video frames as in-
put and an RGB-temporal stream which takes optical flow (computed in the
RGB domain) as input. We then identify the classes for which our depth2action
performs better than both the RGB-spatial and RGB-temporal streams. We
compute these results for the first split of the UCF101 dataset. Fig. 4a shows
the 20 classes for which our depth2action framework performs best (in order of
decreasing improvement). For example, for the class CricketShot, RGB-spatial
achieves an accuracy of around 0.18, RGB-temporal achieves around 0.62, while
our depth2action achieves around 0.88. (For those classes where RGB-spatial
performs better than RGB-temporal, we simply do not show the performance
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CliffDiving

FrontCrawl

ThrowDiscus

CricketShot ClimbStairs

CartWheel

KickBall

   RideHorse

Fig. 5: Sample video frames of action classes that benefit from depth information.
Left: UCF101. Right: HMDB51. This figure is best viewed in color

of RGB-temporal.) Depth2action clearly represents a complementary approach
especially for classes where the RGB-spatial and RGB-temporal streams per-
form relatively poorly such as CriketBowling, CriketShot, FrontCrawl, Ham-
merThrow, and HandStandWalking. Recall from Fig. 1 that CriketBowling and
CriketShot are very similar with respect to appearance and translational mo-
tion. These are shown the be the two classes for which depth2action provides
the most improvement, achieving respectable accuracies of above 0.8.

Sample video frames from classes in the UCF101 (left) and HMDB51 (right)
datasets which benefit from depth information are show in Fig. 5 (see supple-
mental materials for more samples).

Visualizing Depth2Action: We visualize the convolutional feature maps (conv5)
to better understand how depth2action encodes depth information and how this
encoding is different from that of RGB two-stream models. Fig. 4b shows pairs of
inputs and resulting feature maps for four models: RGB-spatial, RGB-temporal,
depth-spatial, and depth-temporal. (The feature maps are displayed using a
standard heat map in which warmer colors indicate larger values.) The top four
pairs are for “CriketBowling” and bottom four pairs are for “ThrowDiscus” (see
supplemental materials for more action classes).

In general, the depth feature maps are sparser and more accurate than
the RGB feature maps, especially for the temporal streams. The depth-spatial
stream correctly encodes the bowler and the batter in “CriketBowling” and the
discus thrower in “ThrowDiscus” as being salient while the RGB-stream gets
distracted by other parts of the scene. The depth-temporal stream clearly iden-
tifies the progression of the bowler into the scene in “CriketBowling” and the
movement of the discus thrower’s leg into the scene in “ThrowDiscus” as being
salient while the RGB-temporal stream is distracted by translational movement
throughout the scene. These results demonstrate that our proposed depth2action
approach does indeed focus on the correct regions in classes for which depth is
important.

What about IDT? We compare our depth2action framework with improved
dense trajectories (IDT) computed from RGB video. IDT has been shown to be
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Table 2: Comparison of RGB two-stream, IDT computed from RGB video, and
depth2action, and their combinations for the UCF101 dataset. ∆ indicates the
performance increase with respect to RGB two-stream taken as the baseline

Model split01 split02 split03 Average ∆

RGB Two-Stream Baseline 90.8% 92.0% 91.3% 91.4% 0
IDT 83.1% 85.9% 85.1% 84.7% -

Depth2Action 71.9% 73.0% 72.5% 72.5% -

RGB Two-Stream+IDT 91.9% 92.6% 91.8% 92.1% 0.8%
RGB Two-Stream+Depth2Action 91.7% 92.5% 91.8% 92.0% 0.7%

Depth2Action+IDT 84.3% 86.6% 86.4% 85.8% -

RGB Two-Stream+Depth2Action+IDT 92.5% 93.8% 92.8% 93.0% 1.8%

the best hand-crafted features for action recognition [39]. It is known to perform
well under various camera motions (e.g. pan, tilt and zoom) and zoom can be
considered global depth change.

While the top part of Table 2 shows that IDT outperforms depth2action,
which is not surprising due to how noisy our estimated depth maps are, we turn
our attention to the performance obtained by combining these two approaches
with an RGB two-stream model. Rows four and five show that the performance
achieved by combining depth2action with RGB two-stream is on par with the
combination of IDT with RGB two-stream (and both perform significantly bet-
ter than IDT). The last column shows the improvement over RGB two-stream
alone. This demonstrates that although depth2action is not as effective as IDT
when taken alone, it is as complementary to RGB two-stream as IDT. This
point is even more significant given the fact that IDT requires several orders
of magnitude more computation time and storage space (mainly to extract and
store the features) than depth2action. The combination of depth2action and
RGB two-stream is much preferred over that of IDT and RGB two-stream for
large-scale analysis. The last row of Table 2 shows the results of combining all
three approaches. We again get an improvement. This result turns out to be
state-of-the-art for this dataset and stresses the importance and complementar-
ity of jointly exploiting appearance, translational motion, and depth for action
recognition.

4.5 Comparison with State-of-the-art

Table 3 compares our approach with a large number of recent state-of-the-art
published results on the three benchmarks. For UCF101 and HMDB51, the re-
ported performance is the mean recognition accuracy over the standard three
splits. The last row shows the performance of combining depth2action with RGB
two-stream for UCF101 and HMDB51, and RGB C3D for ActivityNet, and also
IDT features. We achieve state-of-the-art results on all three datasets through
this combination, again stressing the importance of appearance, motion, and
depth for action recognition.
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Table 3: Comparison with the state-of-the-art. ∗ indicates the results are from
our implementation of the method. Two-stream and C3D here is RGB based

Algorithm UCF101 Algorithm HMDB51 Algorithm ActivityNet

Srivastava et al. [35] 84.3% Srivastava et al. [35] 44.1% Wang & Schmid [39] 61.3%∗

Wang & Schmid [39] 85.9% Oneata et al. [25] 54.8% Simonyan & Zisserman [31] 67.1%∗

Simonyan & Zisserman [31] 88.0% Wang & Schmid [39] 57.2% Tran et al. [37] 69.4%∗

Jain et al. [9] 88.5% Simonyan & Zisserman [31] 59.1%
Ng et al. [24] 88.6% Sun et al. [36] 59.1%
Lan et al. [17] 89.1% Jain et al. [9] 61.4%
Zha et al. [52] 89.6% Fernando et al. [6] 63.7%
Tran et al. [37] 90.4% Lan et al. [17] 65.1%
Wu et al. [47] 91.3% Wang et al. [43] 65.9%

Wang et al. [43] 91.5% Peng et al. [28] 66.8%

Depth2Action 72.5% Depth2Action 49.7% Depth2Action 52.1%
+Two-Stream 92.0% +Two-Stream 67.1% +C3D 71.2%

+IDT+Two-Stream 93.0% +IDT+Two-Stream 68.2% +IDT+C3D 73.4%

We note that since there are no published results1 for release 1.2 of Ac-
tivityNet, we report the results from our implementations of IDT [39], RGB
two-stream [31] and RGB C3D [37].

5 Conclusion

We introduced depth2action, the first investigation into depth for large-scale
human action recognition where the depth cues are derived from the videos
themselves rather than obtained using a depth sensor. This greatly expands
the applicability of the method. Depth is estimated on a per-frame basis for
efficiency and temporal consistency is enforced through a novel normalization
step. Temporal depth information is captured using modified depth motion maps.
A wide variety of design options are explored. Depth2action is shown to be
complementary to standard approaches based on appearance and translational
motion, and achieves state-of-the-art performance on three benchmark datasets
when combined with them.

In addition to advancing state-of-the-art performance, the depth2action frame-
work is a rich research problem. It bridges the gap between the RGB- and RGB-
D-based action recognition communities. It consists of numerous interesting sub-
problems such as fine-grained action categorization, depth estimation from single
images/video, learning from noisy data, etc. The estimated depth information
could also be used for other applications such as object detection/segmentation,
event recognition, and scene classification. We will make our trained models and
estimated depth maps publicly available for future research.

Acknowledgements. This work was funded in part by a National Science Foun-
dation CAREER grant, #IIS-1150115, and a seed grant from the Center for
Information Technology in the Interest of Society (CITRIS). We gratefully ac-
knowledge the support of NVIDIA Corporation through the donation of the
Titan X GPU used in this work.
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