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Abstract—We investigate how overhead imagery can be in-
tegrated with non-image geographic data to learn appearance
models for geographic objects with minimal user supervision.
While multi-modal data integration has been successfully applied
in other domains, such as multimedia analysis, significant oppor-
tunity remains for similar treatment of geographic data due to
location being a simple yet powerful key for associating varying
data modalities, and the growing availability of data annotated
with location information either explicitly or implicitly.

We present a specific instantiation of the framework in which
overhead imagery is combined with gazetteers to compensate for
a recognized deficiency: most gazetteers are incomplete in that the
same latitude/longitude point serves as the bounding coordinates
of the spatial extent of the indexed objects. We use a hierarchical
object appearance model to estimate the spatial extents of these
known object instances. The estimated extents can then be used
to revise the gazetteers.

A particularly novel contribution of our work is a semi-
supervised learning regime which incorporates weakly labelled
training data, in the form of incomplete gazetteer entries, to
improve the learned models and thus the spatial extent estimation.

I. INTRODUCTION

The automated analysis of overhead imagery remains an
open problem especially for complex geospatial objects. We
here investigate ways in which multi-modal data integration
can help with computer-based image understanding.

Multimodal data integration has been successfully ap-
plied to other information discovery problems particularly in
multimedia analysis. Researchers have exploited connections
between image and non-image data such as image annotations
or video transcripts, to improve image understanding and
other challenging tasks. We contend that there is significant
opportunity for similar analysis of geographic data due to
1) location being simple yet powerful key for associating
varying data modalities; and 2) the growing availability of
data annotated with location information, either explicitly or
implicitly.

We describe a general framework in which georeferenced
overhead imagery is integrated with possibly inaccurate and/or
incomplete geographic object instance data to 1) learn appear-
ance models for the geographic objects with minimal user
supervision; and, in turn, 2) use the learned appearance models
to revise the instance data.

We focus on combining high-resolution aerial imagery with
gazetteers. Gazetteers are geographic dictionaries of what-is-
where on the surface of the Earth which specify, at a minimum,
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Fig. 1. Gazetteers are deficient in that they specify the spatial extents of the
indexed objects using a single point. We propose a semi-supervised learning
framework that leverages these points, such as shown above for this golf
course, to learn object appearance models. These models can, in turn, be used
to estimate the true spatial extents of the objects and update the gazetteer.

a type and a location for each record. Despite their extensive
coverage, most, if not all gazetteers, are deficient in that the
spatial extents of the archived objects are limited to a single
point. As the development team of the University of California
at Santa Barbara Alexandria Digital Library (ADL) gazetteer
points out [1], “for a digital library application, the spatial
extent of the feature, either approximately with a bounding
box or more accurately with a polygonal representation, is
better, but there are no large sets of gazetteer data with
spatial extents.” They go on to state that “establishing the
standards that will enable the sharing of gazetteer data will
help harvest data from many sources, but ultimately deriving
spatial locations and extents from digital mapping products
and other sources automatically will be needed.”

The ADL entry for a golf course in Southern California is
shown at the top of figure 1. Note the same latitude/longitude
point is used for the two bounding coordinates. The bottom of
the figure shows this point mapped on an aerial image.

A fundamental contribution of this paper is to do just as
the ADL gazetteer development team proposes. We leverage
readily available high-resolution overhead imagery to esti-
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Fig. 2. The proposed framework in which georeferenced overhead imagery
is integrated with possibly inaccurate and/or incomplete geospatial object
instance data to 1) learn appearance models for the object with minimal user
supervision; and, in turn, 2) use the learned appearance models to revise the
non-image data to make it more accurate and/or complete.

mate the spatial extents of known object instances to revise
the gazetteers as indicated by the upwards pointing arrow
in figure 1. The other fundamental contribution is that we
treat the incomplete gazetteer entries as weakly-supervised
training data for learning object appearance models in a semi-
supervised manner. This is shown by the downward pointing
arrow, and represents a novel way in which to integrate these
two geographic sources not proposed by the ADL gazetteer
development team nor, to our knowledge, by other researchers.

II.

Researchers in multimedia analysis have combined image
and non-image data to improve image understanding. Com-
puter vision researchers have exploited various forms of meta-
data associated with image collections to learn visual object
models. Berg et al. [2] data mine a large collection of captioned
images of faces from online news sources to train a recognition
system for commonly occurring people. Barnard et al. [3]
develop an object recognizer using 10,000 images of works of
art along with associated free text which varies greatly from
physical description to interpretation and mood. And, Li et al.
[4] turn the search paradigm around by using search results
from the Google image search engine to learn visual models
for a variety of object categories.

RELATED WORK

Researchers working on geographic information systems
have likewise proposed a number of ways to leverage non-
image data sources to improve overhead image understanding.
Road extraction has been improved by using existing vector-
ized road networks as seeds [5], [6], [7] and by using digital
surface models to account for gaps between road segments due
to shadows [8]. Agouris et al. [9] propose a SpatioTemporal
Gazetteer that incorporates aerial imagery as well as existing
vector datasets of extracted outlines and thematic datasets
(building blueprints, building usage records) to automatically
detect changes to the spatial footprints of buildings using
template matching.

Our work differs from previous work on integrating differ-
ent modalities of geographic data in the following aspects:

e  We model more complex object types than the previ-
ous approaches.

e We use a hierarchical object appearance model that
has a latent land use/land class level.

e We incorporate weakly labelled training data in a

semi-supervised learning framework. We show this
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semi-supervised learning framework improves upon a
fully-supervised particularly when very little labelled
training data is available.

This paper builds upon our earlier work on this problem.
In [10], we showed that the distributions of quantized local
features extracted from image regions centered on the gazetteer
point locations were more similar for intra-class object in-
stances than they were for inter-class instances. This provided
initial indication that the gazetteer entries could be used as
weakly labelled training data. That work, however, did not
propose any appearance models, did not propose how those
models would be learned in a semi-supervised manner, nor
did it use ground truth spatial extents for evaluation. In [11],
we developed the hierarchical model used in this work. The
learning in that paper is completely supervised, however, using
only manually labelled examples, and thus does not exploit
gazetteers as a source of weakly labelled training data. The
work presented in this paper extends that work to incorporate
weakly labelled training data in a semi-supervised learning
framework. This is a significant development which allows
gazetteers and other non-image data sources to be integrated
with image data to advance automated image understanding.

III. FRAMEWORK OVERVIEW

Figure 2 presents an overview of the proposed framework
for integrating different modalities of geographic data. The
sources are separated into image and non-image data. Image
sources include aerial imagery such as Digital Orthophoto
Quarter Quads (DOQQs) and urban aerial orthoimagery which
is freely available at the USGS National Map, and commercial
satellite imagery from the IKONOS, Quickbird, GeoEye-1, and
other space-borne sensors which is available for cost. The non-
image data includes gazetteers, maps, such as digital raster
graphics (DRGs), and other repositories which provide type-
location tuples. The overarching goal is to use the imagery
to update the non-image records. This includes detecting
novel object instances as well as localizing known instances
(estimating the spatial extent or correcting for general location
errors). This is accomplished through feature extraction, object
appearance modelling, and detection and localization modules.
We describe below the features, object models, and localiza-
tion procedure used to estimate the spatial extents of known
gazetteer entries which is the focus of this paper. The non-
image data provides both strongly and weakly labelled training
data. The strongly labelled data is in the form of accurate and
complete records, or, as in the case of this paper, manually
labelled data. The weakly labelled data is the incomplete and
possibly inaccurate records.

The rest of this section describes the data sources used to
estimate the spatial extents of known gazetteer entries.

A. Data Sources - Gazetteers

We utilize two gazetteers in this work. First is GeoNames!,

an online world-wide gazetteer compiled from several dozen
sources including other gazetteers. Queries to GeoNames re-
turn a single point as the spatial extent of an object.

Uhttp://www.geonames.org
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Fig. 3. The three levels of our hierarchical model. Level 1 represents the
object using quantized SIFT features shown here as x’s. BOVW histograms
are computed for image tiles and SVM classifiers are used to assign LULC
labels to the tiles in level 2. The distribution of the LULC classes in level 3
constitutes the final object model.

We also treat Google Maps as a gazetteer in that it allows us
to perform location-based searches for geospatial objects such
as Costco shopping centers. We further use the Google Maps
Geocoding API? to translate the street addresses provided by
Google Maps into latitude/longitude points.

B. Data Sources - Image Repositories

We use the USGS National Map Seamless Data Server®
interface to automatically download high-resolution overhead
imagery. Images are retrieved from the National Map using
a simple rectangular query region specified by its bounding
latitude and longitude values. In our case, the single lati-
tude/longitude point from the gazetteer serves as the center of
a region whose size is chosen to ensure that the retrieved image
should contain the target object. This size is chosen empirically
in the experiments below based on the observed sizes of sample
objects. A single size is picked for each object type and then
fixed for all the retrievals. Note that the gazetteer point does
not always fall inside the object due to data collection, geo-
registration, or other errors.

IV. HIERARCHICAL OBJECT MODEL

This section describes the three levels of the hierarchical
appearance model we use to estimate the spatial extent of
known gazetteer entries. See figure 3 for an illustration of the
model.

A. Level 1 - Local Invariant Features

We use local invariant features to characterize the objects
at the lowest level of the hierarchy. These features are designed
to be robust to image variations caused by geometric image
transformations, such as scaling and rotation, as well as to
photometric distortions caused by variation in illumination, etc.
They have proven to be effective for a range of computer vision
applications over the last decade.

We choose David Lowe’s Scale Invariant Feature Trans-
form (SIFT) [12] as our local invariant feature detector and

Zhttp://code.google.com/apis/maps/documentation/geocoding
3http://seamless.usgs.gov
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descriptor. The SIFT detector, like most local feature detectors,
results in a large number of feature points. This density is
important for robustness but presents a representation chal-
lenge particularly since the SIFT descriptors have 128 di-
mensions. We adopt a standard bag-of-visual-words (BOVW)
[13] approach to summarize the descriptors by quantizing
and aggregating the features without regard to their location.
We first construct a visual dictionary by performing k-means
clustering on a large number of SIFT features (from a dataset
different from that used to train the object models). This
dictionary is then used to quantize the individual SIFT points
into “visual words” by simply assigning the label of the closest
cluster centroid. We aggregate the quantized features at the
image tile level using a BOVW histogram

BOVW = [tl,tg, e ,tv] B

where ¢, is the number of occurrences of visual word v in
a tile and V' is the dictionary size. The BOVW histogram is
normalized to have unit L1 norm to account for the difference
in the number of interest points between tiles.

We use 256x256 pixel tiles in all the experiments below.

B. Level 2 - Latent LULC Classes

An intermediate, latent level bridges the gap between the
low-level local invariant features and the high-level objects.
Specifically, land use/land class (LULC) labels are assigned to
image tiles using support vector machines (SVMs).

We leverage our recent work [14] on LULC classification.
In that work, we used a large ground truth dataset to train
SVM classifiers for a number of LULC classes. We use the
probabilistic output option of the LIBSVM package [15] to
compute, for each tile 7 in an image, the probability distribution
over the M LULC classes as

P(tzle,) = [pl,an --'7p]\/1} )

where p,, corresponds to the probability that tile ¢ is assigned
to the mth class by the SVM classifiers. The SVM classifiers
take as input the BOVW histograms from level 1. We normal-
ize P(tile;) so that M p,, = 1.

In order to reduce the effect of tile (mis)alignment, we
perform the LULC labeling on tiles which overlap by 50
percent. Thus, each 128x128 pixel block appears in four
256x256 pixel tiles. We apply a smoothing mechanism to the
LULC class distribution at the block level

P(block;) = i > Ptile;)

where the sum is taken over the four tiles in which block j
appears.

ey

To summarize, our final representation at level 2 in the
hierarchy is a probability distribution P(block;) over M
LULC classes for each 128x128 pixel block j.

C. Level 3 - Object Model

The top level of our representation also models the objects
as probability distributions over LULC classes. For an object



region encompassing a set of U blocks labelled at level 2, we
compute

> P(block;)

block; €U

1
P(object) = I} @)

where P(block;) is computed using equation 1 and |U| is the
cardinality of U.

V. SPATIAL EXTENT ESTIMATION VIA RELEVANCY

We use a relevance function to determine whether image
tiles near a known object instance are actually part of the
object or not. This relevance function is based on the top
level of our hierarchical object model, specifically the LULC
class probability distribution. We compare two techniques for
learning this relevance function: fully-supervised, in which
only strongly labelled examples are used, and semi-supervised,
in which both strongly and weakly labelled examples are used.

We use a recent bipartite ranking function to incorporate
unlabelled data in the learning phase [16]. The goal in bipartite
ranking is to learn a scoring function H which assigns higher
scores to relevant instances than to irrelevant ones. In our prob-
lem, we consider regions belonging to the object of interest as
being relevant, and regions belonging to the background as
being irrelevant. Our goal is to mark as relevant those regions
within the true spatial extent.

In the fully-supervised case, the function is learned using a
set of examples which are either labelled as relevant or irrele-
vant. In the semi-supervised case, the training set includes not
only the labelled data but also unlabelled data. The unlabelled
data is typically incorporated into the learning by assuming
that unlabelled examples which are similar (in feature space)
to labelled ones should have a similar (relevancy) label. We
use the bipartite ranking function of Amini et al. [16] which
provides robustness to error-prone propagation of labels to
unlabelled training data by minimizing the ranking errors on
the labelled and unlabelled training sets separately.

Once a relevance function has been learned, we estimate
the spatial extent of a known object instance in a target image
as follows. First, we extract and quantize SIFT features from
the target image. We then compute the BOVW histograms
for overlapping 256x256 pixel tiles and the multi-class SVM
classifiers are used to compute the LULC class distributions
for each tile. The LULC class distributions are then computed
for each 128x128 pixel block using equation 1.

We slide a square window of size wxw blocks over the
image in increments of one block. For each window location,
we compute the probability distribution of the window over
the LULC classes:

P(window) =
block; cwindow

2 P(block;) ,

3)

where P(block;) is computed using equation 1. We use the
relevance function to rank all the windows in the target image
in order of decreasing relevancy. The input to the relevance
function for a window is the probability distribution over the
LULC classes as computed in equation 3 and the output is
a relevancy score. The estimated spatial extent is then the
union of all blocks in all windows whose relevancy is above
a relevancy threshold 0. We discuss the setting of 6 below.
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VI. EXPERIMENTAL RESULTS

A. Dataset

The GeoNames gazetteer is used to identify 44 high
schools, 27 golf courses, and 23 mobile home parks, and
Google Maps is used to identify 18 Costco shopping centers.
The National Map Seamless Data Server is then used to
download 1-foot resolution orthoimagery using a large query
region to ensure the images contain the target objects.

A ground truth dataset is created by manually delineating
the target objects using a polygon representation. This labeling
was done by undergraduates in our lab with no knowledge of
the proposed approach.

We use the hierarchical object model to represent the
ground truth objects as follows. SIFT features are extracted
from each of the images and quantized using a visual dictio-
nary consisting of 100 visual words. In previous work [17],
we showed that a dictionary of this size represents a good
balance between efficiency and accuracy. A BOVW histogram
is computed for overlapping 256x256 pixel tiles.

Tile-level LULC distributions are computed using a set
of SVMs corresponding to 18 LULC classes: agricultural,
airplane, baseball diamond, buildings, chaparral, dense residen-
tial, forest, freeway, golf course, harbor, intersection, medium
density residential, mobile home park, overpass, parking lot,
runway, sparse residential, and tennis courts. Finally, block-
level LULC distributions are computed using equation 1 and
object-level distributions are computed using equation 2.

B. Evaluation

We use a retrieval/detection paradigm to evaluate how well
a learned model estimates the spatial extent of a known object
instance. That is, instead of selecting a particular value for
the cutoff threshold 6, we vary this parameter and compute
precision and recall values.

Given a target image with ground truth spatial extent L.,
and estimated spatial extent L.y corresponding to a specific
setting of the relevancy threshold 6, we compute precision as
the fraction of the estimated region that actually belongs to the
true spatial extent:

4
‘Lest| ( )

precision =

We compute recall as the fraction of the true spatial extent that

appears in the estimated region:

‘Lest n Ltrue|
‘Ltrue‘

In these equations, | - | indicates the area of a region in pixels

and [ indicates set intersection. As usual, precision and recall
range from O to 1.

recall = ®))

9

C. Experiments

We compare two different training regimes. First, the fully-
supervised case where the ranking function is learned using
strongly labelled training data; i.e., images in which the spatial
extent of an object has been manually delineated.
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Results for instances of the high school (a-c), golf course (d-f), mobile home park (g-i), and Costco (j-1) classes. In each triple, the left image is the

manually delineated ground truth, the middle image is the bounding box(es) as detected using the fully-supervised approach, and the right image is the bounding

box as detected using the proposed semi-supervised approach.

The second case is the semi-supervised case where the
ranking function is learned using a combination of strongly
and weakly labelled training data. The weakly labelled data
are images in which the object has not been delineated. The
significance here is that such weakly labelled training data
can be automatically generated using existing gazetteers which
represent the spatial extent using only a single point. This point
can be used to retrieve imagery from the National Map or
other image repository which should contain the object roughly
centered. The query region is chosen to be larger than the
typical size of the particular object type.

To show the improvement provided by the weakly labelled
data, the strongly labelled data consists of only one manually
labelled image in both learning regimes. The LULC distribu-
tion of the ground truth region as computed using equation 2
is the single relevant example. The LULC distributions over
windows outside the object region are the irrelevant examples.

The unlabelled examples in the semi-supervised learning
regime are the LULC distributions over windows from a set
of weakly labelled images. We equally weight the labelled and
unlabelled data in the learning as described in [16].

We evaluate performance using cross-validation. Each im-
age in the ground truth dataset is taken separately as the la-
belled image. The rest of the images are separated equally into
unlabelled training data and test data. Both learning regimes
see the single labelled image. The semi-supervised regime
also sees the unlabelled training data. The ranking function
is then applied to each of the test images separately. For each
test image, a set of precision-recall values are computed as
the relevancy threshold, 6, is varied. A set of precision-recall
values is computed by averaging over all test images. The final
set of precision-recall values is computed by averaging over
all trials in the cross-validation (one for each image in the
ground truth dataset). We also compute an average precision
(AP) from this final set.

D. Results

Our results clearly show that incorporating the weakly
labelled training samples provided by the gazetteers improves
the object appearance models, and thus the spatial extent
estimation. Figure 4 shows the precision-recall curves for the
four object types. The results for the fully-supervised learning
regime are shown using blue x’s. The results for the semi-
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TABLE 1. AVERAGE PRECISION VALUES FOR THE TWO LEARNING

REGIMES.
Learning HS GC | MHP | Costco
Fully-Supervised | 0.316 | 0.460 | 0.260 | 0.190
Semi-Supervised | 0.401 | 0.518 | 0.340 | 0.260

supervised regime are shown using red squares. The proposed
semi-supervised regime results in higher precision at almost
all values of recall, the exceptions being at very high recall
values where there is not much difference.

The average precision for the four object types are listed
in table I. These results again demonstrate that the semi-
supervised regime improves over the fully-supervised one.

Figure 5 shows the results for instances of each of the
classes. The left panels indicate the manually delineated
ground truth, the middle panels show the results of the fully-
supervised case, and the right panels show the results of the
semi-supervised case. The rectangles in the middle and right
panels are the bounding boxes of the windows detected for
an empirically chosen relevancy threshold. (The same thresh-
old value is used for the fully- and semi-supervised cases.)
Clearly, the bounding boxes computed using the proposed
semi-supervised approach more accurately depict the spatial
extents of the objects than those computed using the fully-
supervised approach.

E. Discussion

The results above are notable given that only a single
manually labelled training image is used to learn the ranking
functions. Even in the fully supervised case in which this single
image is the only training data, we achieve a recall rate of 0.5
while the precision is still over 0.3 for three of the four object
types. That is, we are able to estimate more than half the true
spatial extent while keeping the estimated region reasonably
sized. While not perfect, this level of accuracy for the spatial
extent is a big improvement over the single latitude/longitude
point currently present in gazetteers. And, these precision-
recall values would be even higher if we used a bounding box
as the ground truth (as opposed to the manually delineated

polygon).

The main contribution of this paper, however, is the semi-
supervised framework for incorporating weakly labelled train-
ing data. The results above clearly demonstrate this improves
upon the standard fully supervised framework. This is signifi-
cant since there are a growing number of sources from which to
obtain such weakly labelled data. We use a standard gazetteer
and Google Maps in this paper but one could easily imagine
expanding this other sources such as digital raster graphics
maps or even georeferenced social media.

VII.

We described a general framework in which georeferenced
overhead imagery is integrated with possibly inaccurate and/or
incomplete non-image geographic data to learn appearance
models for geographic objects with minimal user supervision.

CONCLUSION

We demonstrated a particular instantiation of this frame-
work which integrates imagery with gazetteers to improve the
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spatial extents of the gazetteer records. We are motivated by
the recognized deficiency of these records currently specifying

the same latitude/longitude pair as the bounding coordinates.

A particularly novel aspect of our approach is that we lever-
age weakly supervised training data which can be automati-
cally generated using the deficient gazetteer records. We show
that a semi-supervised learning regime greatly improves upon
a fully-supervised one. This is important because manually
labelled training data is expensive to generate.
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