Quantitative Comparison of Open-Source Data for Fine-Grain Mapping of Land Use

Xueqing Deng Electrical Engineering and Computer Science University of California, Merced xdeng7@ucmerced.edu

ABSTRACT

This paper performs a quantitative comparison of open-source data available on the Internet for the fine-grain mapping of land use. Three points of interest (POI) data sources–Google Places, Bing Maps, and the Yellow Pages–and one volunteered geographic information data source–Open Street Map (OSM)–are compared with each other at the parcel level for San Francisco with respect to a proposed fine-grain land-use taxonomy. The sources are also compared to coarse-grain authoritative data which we consider to be the ground truth. Results show limited agreement among the data sources as well as limited accuracy with respect to the authoritative data even at coarse class granularity. We conclude that POI and OSM data do not appear to be sufficient alone for fine-grain land-use mapping.

CCS CONCEPTS

• Information systems → Geographic information systems;

• Networks → Location based services;

KEYWORDS

Land use, points of interest, volunteered geographic information

ACM Reference Format:

Xueqing Deng and Shawn Newsam. 2017. Quantitative Comparison of Open-Source Data for Fine-Grain Mapping of Land Use. In *Proceedings of UrbanGIS'17:3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics*, *Redondo Beach*, *CA*, *USA*, *Nov. 2017 (UrbanGIS'17)*, 8 pages. https://doi.org/10.1145/3152178.3152182

1 INTRODUCTION

Land use information plays an important role in urban planning and can inform city design and utility distribution [2]. Land use refers to the function of the land, which is shaped by human activities [14], such as education, retail, etc. It is different from land cover, such as vegetation, built-up areas, etc., which is determined by the land's physical attributes. Remote sensing can be used to determine land cover; mapping land use, however, is much more challenging. The most accurate method for assessing land use has traditionally

UrbanGIS'17, Nov. 2017, Redondo Beach, CA, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5495-0/17/11...\$15.00

https://doi.org/10.1145/3152178.3152182

Shawn Newsam

Electrical Engineering and Computer Science University of California, Merced snewsam@ucmerced.edu

been through surveys. This is labor intensive and time consuming, and is soon outdated. More automated methods for mapping land use are needed.

Land use and land cover are often treated together. There are many combined land use and land cover (LULC) classification systems but they typically blur the distinction between the two super classes and tend to be relatively coarse grain. The European Urban Atlas (UA) project¹ is one example. UA provides consistent LULC data for urban zones with more than one hundred thousand people across Europe. It has a well defined mapping methodology and a hierarchical taxonomy of 17 urban and 10 rural classes. To our knowledge, no LULC mapping effort at this scale and even this relatively coarse granularity exists in the United States. The evaluation performed in this paper is a step towards an automated method for fine-grain LU classification in the United States and beyond. Significantly, we undertake the key step in this paper of establishing a LU class taxonomy that is finer grained than any previous system and whose classes are distinct from LC.

A range of techniques have been developed for automated LULC classification, including using remote sensing imagery [6], social media [20], cell phone data [17], and points of interest [18], or combinations of sources [12]. Classification based on remote sensing imagery has perhaps the longest history but the resulting products tend to confuse land use and land cover and are coarse grain [1, 13, 16]. More recently, ground-level imagery has been investigated for LU classification [11, 20]. The different and close-up perspective of this imagery has the potential to detect function, particularly indoors. However, this approach is limited by the availability of georeferenced ground-level images.

Points of interest (POI) data is a particularly promising source of data for LU mapping. It is readily available online, often through well-developed application programming interfaces (APIs), and typically consists of geographic coordinates and a specific type or category such as restaurant, bank, etc. Previous work has investigated POI data for LU mapping [10, 18] or well as other applications such as mapping population [5]. A key challenge in evaluating LU classification is the lack of ground truth. POI data has therefore also been used as reference set [14] although its validity as ground truth is not clear.

Another source of data for land use mapping is volunteered geographic information (VGI), a term introduced by Goodchild [8] in 2007 to refer to geographic data that is created, assembled, and disseminated voluntarily by individuals. Open Street Map (OSM) is perhaps the most well-known example of VGI. The LU information available in OSM has been compared with authoritative LU data [3] but this study was limited to Germany where OSM data is more

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

¹https://www.eea.europa.eu/data-and-maps/data/urban-atlas#tab-gis-data

UrbanGIS'17, Nov. 2017, Redondo Beach, CA, USA

complete. OSM is much less complete outside Europe, particularly in the United States [21] and in China, where 94% of the country had little or no data as of 2014 [19].

A wide range of open-source data has been used for mapping LU. However, it is not clear how these sources differ. We therefore undertake the first comparison, to our knowledge, of these different sources. We do this with respect to a new, fine-grain LU class taxonomy which we introduce. We focus on POI and VGI data as these seem to be the most promising sources for LU mapping. We compare the sources to each other as well as to a coarse-grain authoritative LU map.

We summarize our contributions as follows:

- We introduce a new, fine-grain LU class taxonomy based on the American Planning Association's Land Based Classification Standard [4]. This taxonomy characterizes function. It is hierarchical with 9 level-one classes, 47 level-two classes, and 159 level-three classes. We refer to this as the LBCS LU classes. The LBCS hierarchy relevant to this study is shown in the first four columns of table 5 and the first two columns of table 6.
- We compare three POI sources, Google Places, Bing Maps, and the Yellow Pages, and one VGI source, OSM, with respect to mapping the LBCS classes at the parcel footprint level for the city of San Francisco. We compare the sources to each other as well as to a coarse-grain authoritative LU map. This is the first time, to our knowledge, that such a number of sources has been compared.

2 OVERVIEW OF THE STUDY

A data source can be deficient in a number of ways for mapping LU with respect to a particular class taxonomy over a given geographic region. The source's classes might not align with the target classes. That is, classes could be missing or not at same taxonomic level. The location information of the data might not be accurate. And, the spatial coverage could be sparse. Ground truth would allow a data source to be quantitatively assessed along these three dimensions. No ground truth exists for our LBCS classes and so we instead compare our sources to each other to provide insight into their individual deficiencies.

We first align each source with the LBCS taxonomy. This is a difficult undertaking since the sources were not created for LU classification. They also differ significantly among each other with respect to their taxonomic structure. We then use the geographic locations of the source data to assign LBCS classes to the parcel footprints. This allows us to assess the spatial and taxonomic coverage of the individual data sources. We also quantitatively compare them at the footprint scale.

We do have access to coarse-grain authoritative LU information at the parcel footprint level for the study region. We compare each of the sources with this information.

3 DATASETS

This section describes the datasets used in the study. We download POI data from Google Places [9] using its API, from Bing Maps [15] using its API, and from the Yellow Pages website². We download

Table 1: Land use classes from DataSF

Name	Description
CIE	Cultural, Institutional, Educational
MED	Medical
MIPS	Office (Management, Information, Pro-
	fessional Services)
MIXED	Mixed Use (Without Residential)
MIXRES	Mixed Use (With Residential)
PDR	Industrial (Production, Distribution, Re-
	pair)
RETAIL/ENT	Retail, Entertainment
RESIDENT	Residential
VISITOR	Hotels, Visitor Services
VACANT	Vacant

OSM points and polygons in ESRI shape format from QGIS ³. Finally, we download the authoritative LU data including the parcel footprints from DataSF [7]. Thus our dataset can be divided into three categories, POI, OSM features including points and polygons, and authoritative data.

3.1 POI

We obtain 55,126 records from the Google Places API for 74 relevant place types (out of 91) for San Francisco City. Examples of relevant place types include "bank", "museum", and "restaurant". We obtain 7,601 records from the Bing Maps API using 39 relevant entity types (out of 69). Examples of entity types include "shopping", "hotel", and "ATM". We obtain 42,183 records from the Yellow Pages website by searching for the 74 Google Places place types. We wrote our own script to parse the Yellow Pages search results.

3.2 OSM

OSM data can be accessed either through its own API or thirdparty open-source tools. We used QGIS, an application which can download OSM data in XML format and convert it to ESRI shapefiles. We extract 31,784 points and 161,285 polygons in a bounding box of San Francisco City. Unlike the POI data, OSM attributes do not have a fixed set of values. Instead, contributors are free to use any description and even create new attributes. Examples of OSM attributes for San Francisco include "land use", "building", "railway", and "shop". The values assigned to these attributes often overlap. Of the 193,069 records downloaded from OSM, only 10,439 have non-empty relevant attribute values.

3.3 Authoritative Data

We download the parcel footprints as ESRI shapefiles for San Francisco from DataSF [7]. There are a total of 245,003 parcel polygons. This data also includes coarse-grain LULC labels for each footprint. This flat taxonomy contains 12 classes, 10 of which are relevant to land use. These 10 classes are listed in table 1.

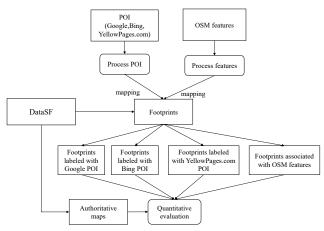
4 METHODOLOGY

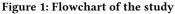
This section describes how the POI and OSM data is used to assign LBCS classes to the parcel footprints. Figure 1 shows a flowchart of the overall study.

²https://www.yellowpages.com/

³http://www.qgis.org/en/site/

Quantitative Comparison of Open-Source Data for Fine-Grain Mapping of Land Use UrbanGIS'17, Nov. 2017, Redondo Beach, CA, USA





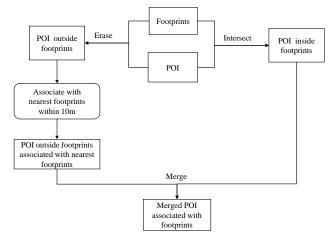


Figure 2: Labeling parcel footprints with POI data

4.1 Mapping POI Data

We first manually align the POI data with the LBCS classes. This alignment is shown in tables 5 and 6. The first few columns of these tables show the target LBCS classes. The last three columns show the assignment of the Google Places, Bing Maps, and Yellow Pages POI data.

Once we have associated an LBCS class with each POI, we label the footprints using the workflow shown in figure 2. The POI's LBCS class is assigned to whichever footprint the POI falls in. If the POI does not fall in any footprint, we assign its class to the nearest footprint in a 10m radius. POIs that do not fall within 10m of a footprint are ignored. Note that a footprint can thus be labeled with multiple LBCS classes by a single source. This makes sense because a parcel can have more than one land use.

4.2 Mapping OSM Data

We again first manually align the OSM data with the LBCS classes. The challenge here is that OSM data does not have a fixed set of attributes (keys) and values. We therefore first identify a set of commonly used keys relevant to our application. This includes keys such as "amenity", "building", and "land use". We then identify a set of relevant values for these keys and associate them with the

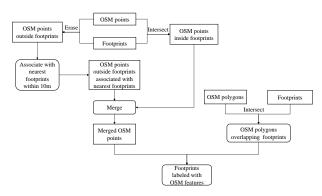


Figure 3: Labeling parcel footprints with OSM data

LBCS classes. Table 2 shows the alignment between OSM keys and key values and LBCS classes.

OSM data consists of points and polygons. Points are used to label footprints the same way as the POI data above. Polygons are used to label footprints using shape intersection. Labels are assigned if there is a non-zero intersection between the OSM polygon and a footprint.

OSM Key	OSM Key Value	LBCS
	bicycle repair station, car wash,	2100
	clothes stores, corner market, fuel,	
	grocery, market place	
	bank&atm	2200
	car rental	2300
omonite	animal shelter, embassy, laundry, pet	2400
amenity	grooming, post office, veterinary, con-	
(point)	ference center	
	bar, café, fast food, night club, restau-	2500
	rant	
	bicycle parking, bus station, parking	4100
	library	4200
	arts center, cinema, music venue	5100
	gym	5300
	college, kindergarten, music school,	6100
	university	
	fire station, police	6400
	clinic, community center, hospital,	6500
	dentist, doctors, doctors office, nurs-	
	ing home	
	place of worship	6600
building	apartment, house, residential	1100
U	commercial, retail	2000
(point)	school	6100
landuse	residential	1100
	commercial, retail	2000
(point)	recreation	5000
	continued or	ı next page

continued fr	continued from previous page							
OSM Key	OSM Key Value	LBCS						
	commercial	2000						
	car wash, fuel, market place, pharmacy	2100						
	bank&atm	2200						
	car rental, boat rental	2300						
	animal shelter, embassy, post office,	2400						
amenity	veterinary, conference center							
(polygon)	bar, café, fast food, night club, restau-	2500						
(polygoll)	rant							
	bicycle parking, bus station, parking	4100						
	library, studio	4200						
	arts center, cinema, theater	5100						
	college, kindergarten, school,	6100						
	preschool, university							
	fire station, police	6400						
	clinic, community center, hospital,	6500						
	dentist, doctors, doctors office, nurs-							
	ing home							
	place of worship	6600						
	apartment, house, residential	1100						
	hotel	1300						
building	commercial, retail	2000						
(polygon)	train_station	4100						
	library, museum	4200						
	school, college, kindergarten, univer-	6100						
	sity							
	hospital	6500						
	church	6600						
landuse	residential	1100						
(polygon)	commercial, retail	2000						
(porygon)	recreation	5000						

Table 2: Alignment of OSM keys/values to LBCS classes

5 QUANTITATIVE EVALUATION

This section presents our quantitative evaluation. This includes comparing the different sources with each other as well as with the authoritative data.

5.1 Spatially Valid Data

Figure 4 shows the number of records that remain after spatially mapping the data to the footprints. The reduction in valid (that within 10m of a parcel) data is likely due to several factors. First, is simple errors in the location information. Also, some of the records correspond to features which do not fall within footprints such as taxi stands and bus stops. Significantly, none of the data sources contains more than 50,000 valid records. This means that less than 20% of our target set of 245,003 footprints can be labeled with any one source. Our first finding is thus that both the POI and OSM datasets are sparse at the footprint scale.

Columns 2 through 5 of table 4 show the breakdown of valid data for each of the sources with respect to the LBCS hierarchy.

5.2 Pairwise Comparisons of Data Sources

We perform pairwise comparisons between the data sources to determine their level of agreement. High levels of agreement between

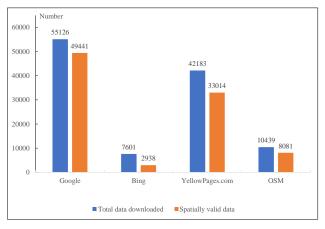


Figure 4: Records before and after mapping to footprints

multiple data sources can be an indication of good accuracy of each especially in the absence of ground truth.

Columns 2 through 5 of table 4 show the number of parcels labeled by each of the datasets for each class. Columns 6 through 11 show the agreement between pairs of data sources and column 12 shows the agreement between all of the sources. These columns indicate the number of parcels labeled consistently by the combinations of sources (their agreement). The number in parentheses is this number divided by the total number parcels labeled by either or both datasets (intersection over union) reported as a percentage. For example, according to the first row, Google Places labeled 586 parcels and Bing Maps labeled 167 parcels with class 1000. 113 of these are in agreement. This represents 17.66% of the parcels labeled as class 1000 by either Google or Bing or by both.

We make the following observations based on the results in table 4. Google Places and the Yellow Pages tend to have the highest agreement. This is as high as 49.33% agreement at level-one of the class hierarchy for class 2000 General Sales or Services. They also have agreements above 20% for many level-two and level-three classes.

There is little agreement between Bing Maps and the other data sources. This is mostly due to the small size of the Bing Maps dataset.

The agreement between OSM and Google Places or the Yellow Pages is mixed. This agreement can be high for some classes. However, there is a clear mismatch between OSM and the other sources in terms of the class taxonomies. For example, OSM labels a large number of parcels with class 1000 Residence or Accommodation but these are nearly all in subclass 1100 Private Household. In contrast, all of the parcels labeled by Google Places or the Yellow Pages with class 1000 are in subclass 1300 Hotels, Motels, of Other Accommodation Services. This difference reflects the fact that Google Places and the Yellow Pages provide POIs while OSM contains information about residential areas.

5.3 Comparison with Authoritative Data

We here compare the data sources with the coarse-grain authoritative data. This requires aligning our LBCS classes with the 10 classes of the authoritative data shown in table 1. To do this, we assign classes 2100, 5200, and 5300 to RETAIL/ENT; classes 6100 Quantitative Comparison of Open-Source Data for Fine-Grain Mapping of Land Use UrbanGIS'17, Nov. 2017, Redondo Beach, CA, USA

				~		1							
Class	DataSF		Bing			Google			YP			OSM	
Class	Datasr	Results	Precision	Recall	Results	Precision	Recall	Results	Precision	Recall	Results	Precision	Recall
CIE	3701	38/68	0.56	0.01	606/1413	0.43	0.16	433/978	0.44	0.12	808/1949	0.41	0.22
RETAIL/ENT	4513	181/677	0.27	0.04	1295/7274	0.17	0.28	914/4311	0.21	0.20	529/2104	0.25	0.12
VISITOR	508	58/167	0.35	0.11	150/586	0.26	0.30	131/397	0.33	0.26	47/53	0.89	0.09
MED	359	1/12	0.08	0.00	151/2055	0.07	0.42	104/1004	0.10	0.29	66/901	0.07	0.18
MIPS	2138	0/3	0.00	0.00	73/339	0.22	0.03	132/499	0.26	0.06	2/7	0.29	0.00
RESIDENT	179028										28309/34818	0.81	0.16

Table 3: Quantitative comparison with authoritative data

and 6600 to CIE; classes 6200 and 6300 to MIPS; class 1100 to RESI-DENT; class 1300 to VISITOR; and class 6500 to MED. Some of the LBCS classes are not assigned due to the mismatch between the two taxonomies. We do not use authoritative classes MIXED and MIXRES due to how broad and ambiguous they are. We also do not use class PDR since our data sources do not cover this class.

Table 3 shows the comparison between each of the data sources and the authoritative data. These results are calculated differently than in table 4 since we treat the authoritative data as the ground truth. The second column shows the counts of parcels labeled with the authoritative data classes. For each data source, we report the number of parcels labeled correctly by that source as well as the precision and recall. For example, 38 of 68 parcels labeled by Bing Maps as CIE are correct according to the authoritative data. This represents a precision of 0.56 and a recall of 0.01.

Google Places and the Yellow Pages are seen to be the best datasets in terms of precision and recall. However, even at this coarse granularity, neither of them achieves precision or recall rates above 0.5 for any class. Bing has very low recall due to its small size. OSM has higher precision than recall and is able to achieve precision above 0.8 for classes VISITOR and RESIDENT. This again emphasizes its difference with the POI data.

6 CONCLUSION AND FUTURE WORK

We compared four open-source data sources for fine-grain land-use mapping at the parcel level for San Francisco. We observed limited agreement among the data sources as well as limited accuracy with respect to coarse-grain authoritative data. These results suggest that, at least, the four sources considered are not sufficient for mapping land use over a large geographic region particularly with respect to the proposed fine-grain land-use taxonomy.

This motivates future work on investigating and integrating additional data sources especially ones with dense spatial coverage.

7 ACKNOWLEDGMENTS

This work was funded in part by a National Science Foundation CAREER grant, #IIS-1150115.

REFERENCES

- Elhadi Adam, Onisimo Mutanga, John Odindi, and Elfatih M. Abdel-Rahman. 2014. Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers. *International Journal of Remote Sensing* 35, 10 (2014), 3440–3458.
- [2] Jamal Jokar Arsanjani, Marco Helbich, Mohamed Bakillah, Julian Hagenauer, and Alexander Zipf. 2013. Toward mapping land-use patterns from volunteered geographic information. *International Journal of Geographical Information Science* 27, 12 (2013), 2264–2278.
- [3] Jamal Jokar Arsanjani, Peter Mooney, Alexander Zipf, and Anne Schauss. 2015. Quality assessment of the contributed land use information from OpenStreetMap versus authoritative datasets. In OpenStreetMap in GIScience. Springer, 37–58.

- [4] American Planning Association. 2010. Land Based Classification Standards. (2010). https://www.planning.org/lbcs/
- [5] Mohamed Bakillah, Steve Liang, Amin Mobasheri, Jamal Jokar Arsanjani, and Alexander Zipf. 2014. Fine-resolution population mapping using OpenStreetMap points-of-interest. *International Journal of Geographical Information Science* 28, 9 (2014), 1940–1963.
- [6] G. Cheng, J. Han, L. Guo, Z. Liu, S. Bu, and J. Ren. 2015. Effective and Efficient Midlevel Visual Elements-Oriented Land-Use Classification Using VHR Remote Sensing Images. *IEEE Transactions on Geoscience and Remote Sensing* 53, 8 (2015), 4238–4249.
- [7] DataSF. 2017. Open data: land use. (2017). https://data.sfgov.org/ Housing-and-Buildings/Land-Use/us3s-fp9q/data
- [8] Michael F Goodchild. 2007. Citizens as sensors: the world of volunteered geography. GeoJournal 69, 4 (2007), 211–221.
- [9] Google Inc. 2017. Google Places API. (2017). https://developers.google.com/ places/web-service/search
- [10] Shan Jiang, Ana Alves, Filipe Rodrigues, Joseph Ferreira, and Francisco C Pereira. 2015. Mining point-of-interest data from social networks for urban land use classification and disaggregation. *Computers, Environment and Urban Systems* 53 (2015), 36–46.
- [11] Daniel Leung and Shawn Newsam. 2012. Exploring Geotagged Images for Landuse Classification. In Proceedings of the ACM Multimedia 2012 Workshop on Geotagging and Its Applications in Multimedia (GeoMM '12). 3–8.
- [12] Xiaoping Liu, Jialv He, Yao Yao, Jinbao Zhang, Haolin Liang, Huan Wang, and Ye Hong. 2017. Classifying urban land use by integrating remote sensing and social media data. *International Journal of Geographical Information Science* 31, 8 (2017), 1675–1696.
- [13] Ramita Manandhar, Inakwu O. A. Odeh, and Tiho Ancev. 2009. Improving the Accuracy of Land Use and Land Cover Classification of Landsat Data Using Post-Classification Enhancement. *Remote Sensing* 1, 3 (2009), 330–344.
- [14] Huina Mao, Gautam Thakur, and Budhendra Bhaduri. 2016. Exploiting Mobile Phone Data for Multi-category Land Use Classification in Africa. In Proceedings of the 2Nd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics (UrbanGIS '16). Article 9, 6 pages.
- [15] Microsoft. 2017. Bing Maps API. (2017). https://msdn.microsoft.com/en-us/ library/gg585126.aspx
- [16] "Hossein Saadat, Jan Adamowski, Robert Bonnell, Forood Sharifi, Mohammad Namdar, and Sasan Ale-Ebrahim". 2011. Land use and land cover classification over a large area in Iran based on single date analysis of satellite imagery. *ISPRS Journal of Photogrammetry and Remote Sensing* 66, 5 (2011), 608 – 619.
- [17] Jameson L. Toole, Michael Ulm, Marta C. González, and Dietmar Bauer. 2012. Inferring Land Use from Mobile Phone Activity. In Proceedings of the ACM SIGKDD International Workshop on Urban Computing (UrbComp '12). 1–8.
- [18] Yao Yao, Xia Li, Xiaoping Liu, Penghua Liu, Zhaotang Liang, Jinbao Zhang, and Ke Mai. 2017. Sensing spatial distribution of urban land use by integrating pointsof-interest and Google Word2Vec model. *International Journal of Geographical Information Science* 31, 4 (2017), 825–848.
- [19] Shudan Zheng and Jianghua Zheng. 2014. Assessing the Completeness and Positional Accuracy of OpenStreetMap in China. In *Thematic Cartography for* the Society. Springer International Publishing, Cham, 171–189.
- [20] Yi Zhu and Shawn Newsam. 2015. Land Use Classification Using Convolutional Neural Networks Applied to Ground-level Images. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL '15). Article 61, 4 pages.
- [21] Dennis Zielstra, Hartwig H. Hochmair, and Pascal Neis. 2013. Assessing the Effect of Data Imports on the Completeness of OpenStreetMap - A United States Case Study. *Transactions in GIS* 17, 3 (2013), 315–334.

t comparisons
inter-dataset
Quantitative
Table 4:

		Mappin	Mapping results				Comparis	Comparison results			
Class	Google		YP	OSM	Google&Bing	Google&YP	Bing&YP	OSM&YP	Google&OSM	Bing&OSM	Google
											& Bing & OSM &YP
1000	586	167	397	34871	113 (17.66%)	267 (37.29%)	96 (20.51%)	16 (0.05%)	28(0.08%)	7 (0.02%)	2
1100		1		34818							
1300	586	167	397	53	113(17.66%)	267 (37.29%)	96(20.51%)	7(1.58%)	6(0.95%)	1 (0.46%)	0
2000	10481	1617	8661	10059	1375(12.82%)	6323 $(49.33%)$	1317 (14.70)	3941 (26.67%)	4732 (29.93%)	1067 (10.06%)	871
2100	5996	627	3256	1898	474 (7.71%)	2271 (32.53%)	$375 \ (10.69\%)$	829~(19.17%)	$1254\ (18.89\%)$	$202 \ (8.70\%)$	143
2110	799	10	586		5(0.62%)	341 (32.66%)	5(0.85%)				
2120	989	93	362		34(3.24%)	154~(12.87%)	21 (4.84%)				
2130	1640	259	1095		153 (8.76%)	587 (27.33%)	129~(10.53%)				
2140	156		151			61(24.80%)					
2150	814	254	1252		50(4.91%)	452 (28.00%)	$138 \ (10.09\%)$				
2160	213	40	120		$24\ (10.48\%)$	83 (33.20%)	22~(15.94%)				
2200	808	135	1426	352	73 (8.39%)	494 (28.39%)	97 (6.63%)	$182\ (11.40\%)$	$189\ (19.46\%)$	56(12.99%)	40
2300	1124	6	1101	32	5(0.44%)	471 (26.85%)	5(0.45%)	11 (0.98%)	12~(1.05%)	3 (7.89%)	3
2400	1676	17	1948	132	13 (0.77%)	727 (25.09%)	2 (0.10%)	34~(1.66%)	67 (3.85%)	9(6.43%)	0
2500	3590	1004	3045	2220	781(20.48%)	2273(52.11%)	741 (22.40%)	1400 (36.22%)	$1718\ (41.98\%)$	529~(19.63%)	393
2600	1858		1630			970 (38.52%)					
2700	52		102			25(19.38%)					
4000	1898	102	335	356	44(2.25%)	148(7.10%)	42~(10.63%)	48 (7.47%)	99 (4.59%)	17 (3.85%)	11
4100	1808	86	271	294	37 (1.99%)	112 (5.69%)	$33\ (10.19\%)$	$22 \ (4.05\%)$	62 (3.04%	12 (3.26%)	9
4200	90	16	68	55	6 (6.00%)	34(27.42%)	8~(10.53%)	18(17.14%)	27 (22.88%)	5 (7.58%)	5
5000	1167	50	964	206	15(1.25%)	369~(20.94%)	17~(1.71%)	55 (4.93%)	88 (6.85%)	4~(1.59%)	0
5100	540	13	455	106	2(0.36%)	181 (22.24%)	$4\ (0.86\%)$	17 (3.13%)	$30 \ (4.87\%)$	4(3.48%)	0
5200	131	24	91	8	6 (4.03%)	25(12.69%)	10 (9.52%)	0 (0)	0 (0)	0 (0)	0
5300	569	14	505	91	1 (0.17%)	$151 \ (16.36\%)$	0 (0)	30 (5.30%)	47 (7.67%)	0 (0)	0
5400	2	0	5		0 (0)	0 (0)	0 (0)				
6000	3536	86	2218	2910	58~(1.63%)	1303 (29.27%)	44(1.95%)	447 (9.55%)	766 (13.49%)	42(1.42%)	22
6100	862	68	501	1450	41 (4.61%)	228 (20.09%)	36 (6.75%)	105 (5.69%)	$246\ (11.91\%)$	25 (1.67%)	13
6200	282	3	449	7	0 (0)	106(19.69%)	0 (0)	2(0.44%)	3 (1.05%)	0 (0)	0
6300	57		50			29 (37.18%)					
6400	79	3	53	96	2 (2.50%)	18~(15.79%)	2 (3.70%)	$16\ (12.03\%)$	$42 \ (31.58\%)$	2 (2.06%)	2
6500	2055	12	1004	901	9 (0.44%)	631 (25.99%)	3~(0.30%)	138~(7.81%)	215(7.84%)	8 (0.88%)	ŝ
6600	551		477	499		273 (36.16%)		137~(16.33%)	192 (22.38%)		
6700	26		30			14 (33.33%)					

Quantitative Comparison of Open-Source Data for Fine-Grain Mapping of Land Use UrbanGIS'17, Nov. 2017, Redondo Beach, CA, USA

Level- 1	Functions	Level-2 class	Functions	Google places type	Bing entity type	YellowPage key- word
class						
1000	Residence or ac- commodation functions	1100	Private household			
		1300	Hotels, motels, or other accommodation services	lodging	Hotel	lodging
		2100	Retail sales or service		more details in table 6	
	General sales	2200	Finance and Insurance	bank, insurance agency, atm	ATM, Bank	bank, insurance agency, ATM
2000	or services	2300	Real estate, and rental and leasing	car_rental, movie rental, real_estate agency	Rental Car Agency	car rental, movie rental, real estate agency
		2400	Business, professional, scientific, and technical services	lawyer, post_office, travel_agency, veterinary_care, accounting	Tourist Informa- tion, Post Office	lawyer, post office travel agency veterinary care accounting
		2500	Food services	restaurant, cafe, night_club, bar	Restaurant	restaurant, café night club, bar
		2600	Personal services	laundry, spa, hair care, beauty_salon		laundry, spa, hair care, beauty salon
		2700	Pet and animal sales or service (except veteri- nary)	pet_store		pet store
4000	Transportation, communica- tion, information, and utilities	4100	Transportation services	bus_station, sub- way_station, taxi_stand, transit station, parking	Bus Station, Com- muter Rail Station, Parking Garage or House, Transporta- tion Service	bus station, sub way station, tax stand,transit station, parking
		4200	Communications and information	library	Library	library
5000	Arts, entertainment,	5100	Performing arts or sup- porting establishment	art_gallery, movie theater, stadium	Cinema, Perform- ing Arts	art gallery, movie theater, stadium
5000	and recreation	5200	Museums and other special purpose recre- ational institutions	aquarium, zoo, mu- seum	Animal Park, His- torical Monument	aquarium, zoo, mu seum
		5300	Amusement, sports, or recreation establish- ment	park, amusement park, casino, gym, bowling_alley	Park or Recreation Area	park, amusemen park, casino, gym bowling alley
		5400	Camps, camping, and related establishments	campground	Campground	campground
	Education,	6100	Educational services	school, university	Higher Education, School	school, university
6000	public admin., health care, and other inst.	6200	Public administration	city_hall, court- house, local_gov- ernment_office	Civic or Commu- nity Centre, Con- vention or Exhibi- tion Centre, City Hall, Court House	city hall, court house, loca government office
		6300	Other government func- tions	embassy		embassy
		6400	Public Safety	fire_station, police	Police Station	fire station, police
		6500	Health and human ser- vices	dentist, hospital, doctor	Hospital	dentist, hospital doctor
		6600	Religious institutions	church, hindu_tem- ple, mosque, syna- gogue		church, hindu tem ple, mosque, syna gogue

UrbanGIS'17, Nov. 2017, Redondo Beach, CA, USA

Level-3 class	Description	Google place type	Bing entity type	YellowPages keywords
2110	Automobile sales or ser-	car_dealer, car_repair,	Auto Dealerships,	car dealer, car repair, car
	vice establishment	car_wash, bicycle	Petrol or Gasoline	wash, bicycle store, gas
		store, gas_station	Station, Motorcycle	station
			Dealership	
2120	Heavy consumer goods	department_store,	Department Store,	department store, fur-
	sales or service	furniture_store, hard-	Home Specialty Store,	niture store, hardware
		ware_store, home	Home Improvement &	store, home goods store
		goods_store	Hardware Store	
2130	Durable consumer	book_store, clothing	Book Store, Con-	book store, clothing
	goods sales and service	store, electronics_store,	sumer Electronics	store, electronics store,
		jewelry_store, shoe	Store, Clothing Store,	jewelry store, shoe
		store	Sporting Goods Store	store
2140	Consumer goods, other	florist		florist
2150	Grocery, food, beverage,	bakery, convenience	Grocery Store, Conve-	bakery, convenience
	dairy, etc.	store, liquor_store	nience Store, Coffee	store, liquor store
			Shop	
2160	Health and personal	pharmacy	Pharmacy	pharmacy
	care			

Table 6: Selected LBCS classes and descriptions, along with POI taxonomic assignments (part 2 of 2)