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Abstract

We describe a novel image representation termed spatial
pyramid co-occurrence which characterizes both the photo-
metric and geometric aspects of an image. Specifically, the
co-occurrences of visual words are computed with respect
to spatial predicates over a hierarchical spatial partitioning
of an image. The representation captures both the absolute
and relative spatial arrangement of the words and, through
the choice and combination of the predicates, can charac-
terize a variety of spatial relationships.

Our representation is motivated by the analysis of over-
head imagery such as from satellites or aircraft. This im-
agery generally does not have an absolute reference frame
and thus the relative spatial arrangement of the image ele-
ments often becomes the key discriminating feature. We val-
idate this hypothesis using a challenging ground truth im-
age dataset of 21 land-use classes manually extracted from
high-resolution aerial imagery. Our approach is shown to
result in higher classification rates than a non-spatial bag-
of-visual-words approach as well as a popular approach for
characterizing the absolute spatial arrangement of visual
words, the spatial pyramid representation of Lazebnik et
al. [7]. While our primary objective is analyzing overhead
imagery, we demonstrate that our approach achieves state-
of-the-art performance on the Graz-01 object class dataset
and performs competitively on the 15 Scene dataset.

1. Introduction

Local invariant features have proven effective for a range
of computer vision problems over the last decade. These
features characterize the photometric aspects of an image
while allowing for robustness against variations in illumi-
nation and noise. The geometric aspects of an image can
further be characterized by considering the spatial arrange-
ment of the local features.

This paper proposes a novel image representation termed
spatial pyramid co-occurrence which characterizes both the
photometric and geometric aspects of an image. Specif-
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Figure 1. Our primary focus is on analyzing overhead imagery which
generally does not have an absolute reference frame. The relative spatial
arrangement of the image elements often becomes the key discriminating
feature as demonstrated in the four land-use classes above.

ically, the co-occurrences of visual words–quantized lo-
cal invariant features–are computed with respect to spatial
predicates over a hierarchical spatial partitioning of an im-
age. The local co-occurrences combined with the global
partitioning allows the proposed approach to capture both
the relative and absolute layout of an image. This is one of
the salient aspects of spatial pyramid co-occurrence.

Another salient aspect of the proposed approach is that
it is general enough to characterize a variety of spatial ar-
rangements. We give examples of spatial predicates which
constrain the distances between pairs of visual words, the
relative orientation between pairs of words, or both.

We are motivated by the problem of analyzing overhead
imagery such as from satellites or aircraft. This imagery
generally does not have an absolute reference frame and
thus the relative spatial arrangement of the image elements
often becomes the key discriminating feature. See, for ex-
ample, the images of different land-use classes in figure 1.

We evaluate our approach using a novel ground truth im-
age dataset of 21 land-use classes manually extracted from
publicly available high-resolution overhead imagery. This
dataset is one of the first of its kind and will be made avail-
able for other researchers1. Our approach is shown to result
in higher classification rates on the land-use dataset than a
non-spatial bag-of-visual-words approach as well as a popu-

1The dataset is available at http://vision.ucmerced.edu/datasets.



lar approach for characterizing the absolute spatial arrange-
ment of visual words, the spatial pyramid representation of
Lazebnik et al. [7].

We perform a thorough evaluation of the effects of dif-
ferent configurations of our approach such as the size of the
visual dictionary and the specificity of the spatial predicate.
We report interesting findings like the fact that smaller vi-
sual dictionaries become preferable for the co-occurrence
component of our representation as the spatial predicate be-
comes more specialized. This somewhat counter-intuitive
result has important implications for the computational
complexity of our representation.

Finally, even though our primary objective is analyz-
ing overhead imagery, we demonstrate that our approach
achieves state-of-the-art performance on the Graz object
class evaluation dataset and performs competitively on the
15 Scene evaluation dataset.

2. Related Work

The broader context of our work is bag-of-visual-words
(BOVW) [3, 13] approaches to image classification. These
approaches quantize local invariant image descriptors using
a visual dictionary typically constructed through k-means
clustering. The set of visual words is then used to repre-
sent an image regardless of their spatial arrangement sim-
ilar to how documents can be represented as an unordered
set of words in text analysis. The quantization of the often
high-dimensional local descriptors provides two important
benefits: it provides further invariance to photometric im-
age transformations, and it allows compact representation
of the image such as through a histogram of visual word
counts and/or efficient indexing through inverted files. The
size of the visual dictionary used to quantize the descrip-
tors controls the tradeoff between invariance/efficiency and
discriminability.

Lazebnik et al. [7] was one of the first works to address
the lack of spatial information in the BOVW representation.
Their spatial pyramid representation was motivated by ear-
lier work termed pyramid matching by Grauman and Dar-
rell [4] on finding approximate correspondences between
sets of points in high-dimensional feature spaces. The
fundamental idea behind pyramid matching is to partition
the feature space into a sequence of increasingly coarser
grids and then compute a weighted sum over the number
of matches that occur at each level of resolution. Two
points are considered to match if they fall into the same grid
cell and matched points at finer resolutions are given more
weight than those at coarser resolutions. The spatial pyra-
mid representation of Lazebnik et al. applies this approach
in the two-dimensional image space instead of the feature
space; that is, it finds approximate spatial correspondences
between sets of visual words in two images.

The spatial pyramid representation characterizes the ab-

solute location of the visual words in an image. Saverese
et al. [12] propose a model which instead characterizes the
relative locations. Motivated by earlier work on using cor-
relograms of quantized colors for indexing and classifying
images [6], they use correlograms of visual words to model
the spatial correlations between quantized local descriptors.
The correlograms are three dimensional structures which in
essence record the number of times two visual words appear
at a particular distance from each other. Correlogram ele-
ments corresponding to a particular pair of words are quan-
tized to form correlations. Finally, images are represented
as histograms of correlations and classified using nearest
neighbor search against exemplar images. One challenge
of this approach is that the quantization of correlograms to
correlations can discard the identities of associated visual
word pairs and thus may diminish the discriminability of
the local image features.

Ling and Soatto [8] also characterize the relative loca-
tions of visual words. Their proximity distribution repre-
sentation is a three dimensional structure which records the
number of times a visual word appears within a particular
number of nearest neighbors of another word. It thus cap-
tures the distances between words based on ranking and not
absolute units. A corresponding proximity distribution ker-
nel is used for classification in a support vector machine
(SVM) framework. However, since proximity kernels are
applied to the whole image, distinctive local spatial distri-
butions of visual words may be overshadowed by global dis-
tributions.

Liu et al. [9] extend the BOVW framework by calcu-
lating spatial histograms where the co-occurrences of local
features are calculated in circular regions of varying dis-
tances. However, the spatial histograms are only extracted
for select visual words determined through an additional
feature selection algorithm. Also, the spatial histograms
are generated by averaging the counts of co-occurrences
throughout the entire image and thus may also fail to cap-
ture distinctive local spatial arrangements.

Our proposed spatial pyramid co-occurrence differs from
the above approaches in the following ways:
• It characterizes both the absolute and relative spatial

layout of an image.
• It can characterize a greater variety of local spatial

arrangements through the underlying spatial predi-
cate. For example, combined proximity and orienta-
tion predicates can capture the general spatial distri-
bution of visual words as well as the shape of local
regions.

• The approach is simple in that it does not require learn-
ing a generative or other form of model.

• The representation can be easily combined with other
representations such as a non-spatial bag-of-visual-
words. And, since the representations are fused late,



visual dictionaries of different sizes can be used for the
spatial (co-occurrence) and non-spatial components of
the combined representation. This allows the non-
spatial component to leverage the increased discrim-
inability of the larger dictionary while limiting the
computational costs associated with storing and com-
paring the co-occurrence structures.

3. Methods

Spatial pyramid co-occurrence characterizes both the ab-
solute and relative spatial arrangement of visual words in
an image. After stating our assumptions and describing
the non-spatial BOVW representation, we review the spa-
tial pyramid representation of Lazebnik et al. [7] since the
proposed method uses the same hierarchical decomposition
of an image. We then describe the proposed approach.

3.1. Assumptions

We assume each image I contains a set of N visual
words ci at pixel locations (xi, yi) where each word has
been assigned a discrete label ci ∈ [1...M ] from a visual
dictionary containing M entries. The locations of the vi-
sual words could either be determined using a (dense) grid
or an interest-point/saliency detector. We use Lowe’s scale
invariant feature transform (SIFT) detector [10] in the ex-
periments below. Local invariant features are extracted at
these locations and quantized into a discrete set of labels
using a codebook typically generated by applying k-means
clustering to a large, random set of features. We also use
Lowe’s SIFT descriptor [10] in the experiments below.

3.2. BOVW Representation

The non-spatial BOVW representation simply records
the visual word occurrences in an image. It is typically rep-
resented as a histogram

BOV W = [t1, t2, . . . , tM ] ,

where tm is the number of occurrences of visual word m.
To account for the difference in the number of visual words
between images, the BOVW histogram is typically normal-
ized to have unit L1 norm.

A BOVW representation can be used in kernel based
learning algorithms, such as non-linear support vector ma-
chines, by computing the intersection between histograms.
Given BOV W1 and BOV W2 corresponding to two im-
ages, the BOVW kernel is computed as:

KBOV W (BOV W1, BOV W2) =
M∑

m=1

min (BOV W1(m), BOV W2(m)).

The intersection kernel is a Mercer kernel which guaran-
tees an optimal solution to kernel-based algorithms based
on convex optimization such as nonlinear SVMs.
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Figure 2. Toy example of a three-level spatial pyramid (adapted from [7]).
The image has three visual words and is divided at three different levels of
resolution. For each level, the number of words in each grid cell is counted.
Finally, the spatial histogram is weighted according to equation 1.

3.3. Spatial Pyramid

The spatial pyramid representation of Lazebnik et al. [7]
partitions an image into a sequence of spatial grids at res-
olutions 0, . . . , L such that the grid at level l has 2l cells
along each dimension for a total of D = 4l cells. A BOVW
histogram is then computed separately for each cell in the
multiresolution grid. Specifically, Hl(k,m) is the count of
visual word m contained in grid cell k at level l. This rep-
resentation is summarized in figure 2.

A spatial pyramid match kernel (SPMK) is derived as
follows. Let H1l and H2l be the histograms of two images
at resolution l. Then, the number of matches at level l is
computed as the histogram intersection:

I (H1l,H2l) =
D∑

k=1

M∑
m=1

min (H1l (k,m) ,H2l (k,m)) .

Abbreviate I (H1l,H2l) to Il. Since the number of
matches at level l includes all matches at the finer level l+1,
the number of new matches found at level l is Il − Il+1 for
l = 0, . . . , L−1. Further, the weight associated with level l
is set to 1

2L−l which is inversely proportional to the cell size
and thus penalizes matches found in larger cells. Finally,
the SPMK for two images is given by:

KSPMK = IL +
L−1∑
l=0

1
2L−l

(Il − Il+1) . (1)

The SPMK is also a Mercer kernel [7].

3.4. Spatial Co-occurrence

Spatial co-occurrence of visual words is motivated by
Haralick et al.’s seminal work [5] on gray level co-
occurrence matrices (GLCM) which is some of the earliest
work on image texture. A GLCM provides a straightfor-
ward way to characterize the spatial dependence of pixel
values in an image. We extend this to the spatial depen-
dence of visual words.

Formally, given an image I containing a set of N visual
words ci at pixel locations (xi, yi) and a binary spatial pred-



icate ρ where ciρcj ∈ {T, F}, we define the visual word
co-occurrence matrix (VWCM) as

V WCMρ(u, v) = ‖(ci, cj)| (ci = u)∧(cj = v)∧(ciρcj)‖.

That is, the VWCM is a count of the number of times two
visual words satisfy the spatial predicate. The choice of the
predicate ρ determines the nature of the spatial dependen-
cies. This framework can support a variety of dependencies
such as the two visual words needing to be within a certain
distance of each other, to have the same orientation, etc. We
describe a number of predicates in the experiments section.

We derive a spatial co-occurrence kernel (SCK) as fol-
lows. Given two visual co-occurrence matrices V WCM1ρ

and V WCM2ρ corresponding to two images, the SCK is
computed as the intersection between the matrices

KSCKρ
(V WCM1ρ, V WCM2ρ) =∑

u,v∈M

min(V WCM1ρ(u, v), V WCM2ρ(u, v)).

To account for differences in the number of pairs of code-
words satisfying the spatial predicate between images, the
matrices are normalized to have an L1 norm of one. The
SCK, as an intersection of two multidimensional counts, is
also Mercer kernel.

3.5. Combining Multiple Spatial Predicates

Multiple binary spatial predicates can be combined as
follows. Given co-occurrence matrices V WCM1ρA

(u, v)
and V WCM2ρA

(u, v) corresponding to predicate ρA for
two images, and co-occurrence matrices V WCM1ρB

(u, v)
and V WCM2ρB

(u, v) corresponding to predicate ρB for
the same two images, a single SCK is computed as the sum
of the individual SCKs

KSCKρA+ρB
= KSCKρA

(V WCM1ρA
, V WCM2ρA

)

+ KSCKρB
(V WCM1ρB

, V WCM2ρB
).

This too is a Mercer kernel. While it is possible to weight
the components corresponding to the two predicates differ-
ently, we have so far not considered this and leave it for
future work.

3.6. Spatial Pyramid Co-occurrence

We now describe the main contribution of this paper,
spatial pyramid co-occurrence. Again, an image is par-
titioned into a sequence of spatial grids at resolutions
0, . . . , L such that the grid at level l has 2l cells along each
dimension for a total of D = 4l cells. The spatial co-
occurrence of visual words is then computed separately for
each cell in the multiresolution grid. Specifically, given a
binary spatial predicate ρ, compute

V WCM l
ρ(k, u, v) = ‖(ci, cj)| (ci = u)∧(cj = v)∧(ciρcj)‖

where the visual words ci are restricted to those in grid cell
k at pyramid level l.

A spatial pyramid co-occurrence kernel (SPCK) corre-
sponding to the spatial pyramid co-occurrences for two im-
ages V WCM1ρ and V WCM2ρ is then computed as

KSP CK(V WCM1ρ, V WCM2ρ) =

LX

l=0

wl

DX

k=1

X

u,v∈M

min(V WCM1
l
ρ(k, u, v), V WCM2

l
ρ(k, u, v))

where the weights wl are chosen so that the sum of inter-
sections has the same maximum achievable value for each
level; e.g., wl = 1/4l. As a sum of intersections, the SPCK
is a Mercer kernel.

Note that the spatial pyramid co-occurrence representa-
tion captures both the absolute and relative spatial arrange-
ments of the visual words. The pyramid decomposition
characterizes the absolute locations through the hierarchi-
cal gridding of the image and the VLCMs characterize the
relative arrangements within the individual grid cells.

Multiple binary spatial predicates can again be combined
by summing the SPCKs corresponding to the individual
predicates.

3.7. Extended SPCK

The SPCK and the non-spatial BOVW representations
are complementary and so it is natural to consider combin-
ing them. We thus form an extended SPCK representation,
termed SPCK+, as the sum of the individual kernels:

KSP CK+({V WCM1ρ, BOV W1}, {V WCM2ρ, BOV W2}) =

KSP CK(V WCM1ρ, V WCM2ρ)+KBOV W (BOV W1, BOV W2).

This sum is a Mercer kernel. We have not considered differ-
ent weights for the the spatial and non-spatial components
of the combined kernel and leave this too for future work.

Note that since the spatial and non-spatial components of
our representation are fused late, the visual dictionary used
to derive the spatial co-occurrence matrices need not be the
same as that used to derive the BOVW histograms. Indeed,
the experiments below show that smaller co-occurrence dic-
tionaries are preferable for SPCK+ as the spatial predicates
become more specialized. This helps reduce the computa-
tional complexity of the proposed approach.

Since SPCK and SPMK are also complementary in how
they characterize spatial dependencies, we also consider a
second extended SPCK representation, termed SPCK++, as
the sum of the SPCK and SPMK kernels:

KSPCK++ = KSPCK + KSPMK . (2)



3.8. Computational Complexity

We compare the computational costs of BOVW, SMPK,
and SPCK in terms of the sizes of the different representa-
tions and the operations required to evaluate the kernels.

For a dictionary of size M , the BOVW representa-
tion has size M and evaluating the BOVW kernel requires
M min computations (plus M − 1 additions). For the
same sized dictionary, an SPMK representation with levels
0, . . . , L has size

SSPMK =
L∑

l=0

l4∑
k=1

M

and evaluating the SPMK kernel requires the same number
of min computations. For L = 2, SSPMK = 21M .

A VLCM corresponding to a co-occurrence dictionary of
size N has N2 entries (this reduces to N(N + 1)/2 unique
entries for symmetric spatial predicates such as those used
in the experiments below). So, a SPCK representation with
levels 0, . . . , L has size

SSPCK =
L∑

l=0

l4∑
k=1

N2

and evaluating the SPCK kernel requires the same number
of min computations. For L = 2, SSPCK = 21N2. In
the case where N ≤ √

M , the computational complexity of
SPCK in terms of storage and kernel-evaluation is O(M),
the same as for BOVW and SPMK. This remains true when
combining multiple spatial predicates. This is significant
with respect to the finding in the experiments below that
greatly reduced co-occurrence dictionaries are sufficient or
even optimal for the extended SPCK representations.

4. Experiments and Results

We evaluate our proposed spatial pyramid co-occurrence
representation on three datasets: 1) a novel dataset of land-
use classes in high-resolution overhead imagery, 2) the pub-
licly available Graz-01 object class evaluation dataset, and
3) the publicly available 15 Scene evaluation dataset.

4.1. Spatial Predicates

We consider two types of spatial predicates: proximity
predicates which characterize the distance between pairs of
visual words, and orientation predicates which characterize
the relative orientations of pairs of visual words.
Proximity Since our primary goal is to analyze overhead
imagery, and, according to Tobler’s first law of geography,
all things on the surface of the earth are related but nearby
things are more related than distant things [14], we define a
proximity predicate ρprox to be true when two visual words

are within r pixels of each other. That is, given visual words
ci and cj at locations (xi, yi) and (xj , yj),

ciρproxcj =

{
T, if

√
(xi − xj)2 + (yi − yj)2 ≤ r;

F, otherwise.
(3)

Thus, the VWCM corresponding to ρprox indicates the
number of times pairs of codewords appear within r pix-
els of each other in a given image or region. Figure 3(a)
shows an example of where ρprox evaluates to F for two
words.
Orientation The SIFT detector provides the orientation of
the interest points used to derive the visual words. We
postulate that these orientations are indicative of the local
shape of image regions and thus derive orientation predi-
cates ρorien which consider the relative orientations of pairs
of visual words.

Given visual words ci and cj with (absolute) orientations
θi and θj with respect to some canonical direction such as
the x-axis, we define a pair of orientation predicates, one
which evaluates to true when the visual words are in-phase
(pointing in the same direction) and another which evaluates
to true when the visual words are out-of-phase (pointing in
opposite directions):

ciρorien21cj =

{
T, if cos(θi − θj) ≥ 0;

F, otherwise

and

ciρorien22cj =

{
T, if cos(θi − θj) < 0;

F, otherwise

where −π < θi, θj ≤ π. Figure 3(b) shows an example of
where ρorien21 evaluates to T and ρorien22 evaluates to F
for two words.

We also define a set of four orientation predicates
ρorien41,...,4 which partition the phase space into four bins.
That is, the four predicates separately evaluate to true for
{√2/2 ≤ cos(θi − θj)}, {0 ≤ cos(θi − θj) <

√
2/2},

{−√
2/2 ≤ cos(θi − θj) < 0}, and {cos(θi − θj) <

−√
2/2}.

We characterize the relative instead of absolute orienta-
tion of pairs of visual words since overhead imagery gener-
ally does not have an absolute reference frame.

4.2. Land-Use Dataset

We evaluate SPCK using a ground truth image dataset of
21 land-use classes. This dataset was manually extracted
from aerial orthoimagery downloaded from the United
States Geological Survey (USGS) National Map. The im-
ages have a resolution of one foot per pixel. 100 images
measuring 256×256 pixels were manually selected for each
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Figure 3. We consider spatial predicates which characterize (a) the dis-
tance between pairs of visual words, and (b) the relative orientation of
pairs of visual words.

of the following 21 classes: agricultural, airplane, baseball
diamond, beach, buildings, chaparral, dense residential, for-
est, freeway, golf course, harbor, intersection, medium den-
sity residential, mobile home park, overpass, parking lot,
river, runway, sparse residential, storage tanks, and tennis
courts. Note that we use the term land-use to refer to this
set of classes even though they contain some land-cover and
possibly object classes. This particular set of classes was
selected because it contains a variety of spatial patterns.

To the best of our knowledge, this is one of the first
ground truth datasets derived from publicly available high-
resolution overhead imagery. This allows us to make it
available to other researchers.

4.3. Land-Use Dataset Experiments

We construct visual dictionaries of varying size by ap-
plying k-means clustering to over a million SIFT features
randomly sampled from images disjoint from the ground
truth images. These dictionaries are then used to label SIFT
features extracted from the 2,100 ground truth images.

We use an SVM classification framework to compare
the different representations and their associated kernels.
Multi-class classification is implemented using a set of bi-
nary classifiers and taking the majority vote. Non-linear
SVMs incorporating the kernels described above are trained
using grid-search for model selection. The only parameter
that needs to be estimated is the penalty parameter of the er-
ror term. Five-fold cross-validation is performed in which
the ground truth dataset is randomly split into five equal
sized sets. The classifier is then trained on four of the sets
and evaluated on the held-out set. The classification rate is
the average over the five evaluations. The results presented
below are the average rates over all 21 classes. The SVMs
are implemented using the LIBSVM package [1].

We compare the following approaches:

• The “baseline” non-spatial BOVW kernel (sec. 3.2).

• The spatial pyramid match kernel (SPMK) [7] (sec.
3.3).

• The proposed spatial pyramid co-occurrence kernel
(SPCK) (sec. 3.6).

Table 1. Classification rates for the land-use dataset. See text for details.
BOVW SPMK [7] SPCK SPCK+ SPCK++
71.86 74.00 73.14 76.05 77.38

• The extended SPCK+ and SPCK++ representations
(sec. 3.7).

We also compare the following configurations:

• A proximity predicate alone. This is referred to as SP1
below. We consider distances of r = 20, 50, 100, and
150 pixels.

• A proximity predicate combined with orientation pred-
icates corresponding to a two-bin phase space. This is
referred to as SP2 below.

• A proximity predicate combined with orientation pred-
icates corresponding to a four-bin phase space. This is
referred to as SP3 below.

• Visual dictionary sizes of 10, 50, and 100 for the co-
occurrence component of the SPCK.

• Different numbers of pyramid levels in the SPCK.

4.4. Land-Use Dataset Results

Table 1 compares the best classification rates of the dif-
ferent approaches for the land-use dataset. A visual dic-
tionary size of 100 is used for the BOVW and SPMK ap-
proaches as well as the BOVW and SPMK extensions to
SPCK. Visual dictionary sizes of 100, 10, and 50 are used
for the co-occurrence components of SPCK, SPCK+, and
SPCK++. Combined proximity plus 4-bin orientation pred-
icates (SP3) are used for SPCK, SPCK+, and SPCK++.

The land-use dataset is challenging and so the improve-
ment that the proposed SPCK+ and SPCK++ provide over
SPMK is significant. In particular, SPCK++ improves per-
formance over SPMK by more than what SPMK itself im-
proves over the non-spatial BOVW. And, SPCK+ provides
about the same improvement. Note that since SMPK in-
cludes BOVW by construction, SPCK+ is a suitable com-
parison since it is simply SPMK combined with BOVW.

We pick a relatively small BOVW and SPMK dictio-
nary size of 100 for the sake of comparison. SPCK+ and
SPCK++ provide a similar improvement over BOVW and
SPMK for larger dictionary sizes.

The remainder of this section provides further analysis
of the proposed SPCK.
Co-occurrence Dictionary Size Table 2 and figure 4 show
the effect of co-occurrence dictionary size on SPCK and
SPCK+. The significant result here is that smaller co-
occurrence dictionaries become sufficient or even optimal
as the SPCK+ spatial predicates become more specialized.
In particular, a co-occurrence dictionary of just 10 code-
words provides better SP3 (SPCK+) performance than one
with 50 or 100 codewords. This reduces the computational
complexity of SPCK+ to be of the same order as SPMK.



Table 2. The effect of co-occurrence dictionary size (rows) on SPCK
and SPCK+. Results are shown for the three different spatial predi-
cate configurations (SP1=proximity only, SP2=proximity+2-bin orienta-
tion, SP3=proximity+4-bin orientation), and for the baseline SPCK and
extended SPCK+.

SP1 SP2 SP3
SPCK SPCK+ SPCK SPCK+ SPCK SPCK+

10 58.86 72.33 61.48 74.76 66.43 76.05
50 71.57 74.43 70.90 74.90 73.00 76.00

100 72.62 72.86 72.57 73.14 73.14 74.05
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Figure 4. The effect of co-occurrence dictionary size on SPCK and
SPCK+.

Table 3. The effect of the spatial predicate proximity distance (rows) on
SPCK. Results are shown for different spatial predicate configurations and
different co-occurrence dictionary sizes (columns).

SP1 SP2 SP3
10 50 100 10 50 100 10 50 100

20 58.00 66.52 67.19 60.67 66.38 66.38 62.19 65.71 64.76
50 58.76 69.24 70.81 60.43 69.76 69.81 65.57 70.14 69.14
100 58.62 70.76 72.00 61.38 70.48 72.38 66.29 72.62 72.43
150 58.86 71.57 72.62 61.48 70.90 72.57 66.43 73.00 73.14
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Figure 5. The effect of the spatial predicate proximity distance on SPCK.
Results are shown for two different spatial predicate configurations as well
as for different co-occurrence dictionary sizes.

Proximity Distance Table 3 and figure 5 show the effect
of the spatial predicate proximity distance (r in Eq. 3)
on SPCK. Results are shown for the three different spa-
tial predicate configurations as well as for different co-
occurrence dictionary sizes. The clear trend is that larger
distances improve performance. This indicates that even

Table 4. The effect of the number of pyramid levels on SPCK. The rows
indicate just level 0, just level 1, just level 2, and all three levels com-
bined. The columns indicate different spatial predicate configurations and
co-occurrence dictionary sizes.

SP1 SP2 SP3
10 50 100 10 50 100 10 50 100

0 52.05 69.81 72.52 55.10 70.19 72.52 60.57 72.57 74.19
1 51.81 66.05 68.00 52.86 65.86 67.57 58.23 67.52 68.33
2 55.01 66.05 66.00 58.52 63.52 62.00 61.19 62.48 59.00

0+1+2 58.86 71.57 72.62 61.48 70.90 72.57 66.43 73.00 73.14
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Figure 6. The performance of the individual pyramid levels on SPCK.
Results are shown for two different spatial predicate configurations as well
as for different co-occurrence dictionary sizes.

long range spatial interactions between visual words is im-
portant for characterizing the land-use classes.
Pyramid Levels Table 4 and figure 6 shows the effect of
the number of pyramid levels on SPCK. Results are shown
for just level 0, just level 1, just level 2, and for all three
levels combined. While combining all three levels usually
performs best, the interesting trend is that the order of the
individual levels depends on the size of the co-occurrence
dictionary. In particular, level 0 performs best for a co-
occurrence dictionary of size 100 while level 2 performs
best for a dictionary of size 10. We will investigate this fur-
ther in future work.

4.5. Graz-01 Dataset

We also apply our approach to the publicly available
dataset Graz-01 [11]. This dataset contains 373 images
of category bike, 460 images of category person, and 270
background images as category “counter-class”. All the im-
ages measure 640x480 pixels and the objects come in differ-
ent scales, poses, and orientations. This dataset is challeng-
ing due to high intra-class variation and have been broadly
used as an evaluation dataset in the computer vision com-
munity. We evaluate our approach using the same experi-
mental set up as in [11]. In particular, our training set con-
tains 100 positive images (bike or person) and 100 negative
images from the other two categories, where half are from
the background and half are from the other object category.
Our test set consists of 100 images with a similar distribu-
tion to the training set. We report equal error rates averaged



Table 5. Evaluation using the Graz-01 dataset. Comparison of the pro-
posed SPCK+ approach with Boosting+SIFT [11], SPMK [7], PDK [8],
and NBNN [2].

[11] SPMK [7] PDK [8] NBNN [2] SPCK+
Bike 86.5 86.3±2.5 90.2±2.6 90.0±4.3 91.0±4.8
Person 80.8 82.3±3.1 87.0±3.8 87.0±4.6 87.2±3.8

Table 6. Results on the 15 Scene dataset.
SPMK [7] SPCK++

Classification Rate 81.40±0.50 82.51±0.43

over ten runs.
Table 5 compares our technique with other approaches

that characterize the spatial arrangement of visual words,
namely the Boosting+SIFT approach of Opelt et al. [11],
the SPMK approach of Lazebnik et al. [7], the proximity
distribution kernel (PDK) approach of Ling and Soatto [8],
and the naive Bayes nearest neighbor (NBNN) approach of
Boiman et al. [2] (while NBNN is not a spatial based ap-
proach, we include it here for completeness). Our SPCK+
is shown to perform better than the other approaches.

4.6. 15 Scene Dataset

Finally, we apply our approach to the publicly avail-
able 15 Scene dataset [7]. This dataset contains a total of
4485 images in 15 categories varying from indoor scenes
such as store, bedroom, and kitchen, to outdoor scenes
such as coast, city, and forest. Each category has between
200 to 400 images and each image measures approximately
300x300 pixels. Following the same experiment setup as
[7], we randomly pick 100 images per category for train-
ing and use the rest for testing. Table 6 compares our re-
sults with those of SPMK. We see again that our approach
SPCK++ improves over SPMK.

The images in the 15 Scene dataset tend to be strongly
aligned so that local spatial arrangement tends to be less im-
portant than global layout. The proposed approach thus re-
sults in only a modest improvement over SPMK (and does
not beat the best published results) on this dataset since it
is designed to distinguish between image classes that pos-
sibly differ only in their relative spatial arrangements such
as the land-use dataset above. The global alignment of the
15 Scene dataset is a much stronger signal for discriminat-
ing between classes than relative spatial arrangement. It
is for these same reasons that SPCK is not appropriate for
strongly aligned object class datasets such as Caltech-101.

5. Conclusion
We proposed spatial pyramid co-occurrence, a novel ap-

proach to characterizing the photometric and geometric as-
pects of an image. The representation captures both the
absolute and relative spatial arrangements of visual words
and can characterize a wide variety of spatial relationships
through the choice of the underlying spatial predicates.

We performed a thorough evaluation using a challeng-
ing 21 land-use class dataset which can be made pub-

licly available since it was derived from royalty free im-
agery. The proposed approach was shown to perform better
on this dataset than a non-spatial bag-of-visual-words ap-
proach as well as a popular approach for characterizing the
absolute spatial arrangement of visual words. And, while
our primary objective is analyzing overhead imagery, we
also demonstrated that our approach achieves state-of-the-
art performance on the Graz-01 object class dataset and per-
forms competitively on the 15 Scene dataset.

We noted several salient aspects of our approach. In par-
ticular, we demonstrated that small visual dictionaries be-
come optimal as the spatial predicates become more spe-
cialized. This tradeoff is an interesting result which we will
investigate further in future work.
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