
Estimating the Spatial Resolution of Very High-Resolution
Overhead Imagery

Haolin Liang
University of California, Merced

hliang27@ucmerced.edu

Shawn Newsam
University of California, Merced

snewsam@ucmerced.edu

ABSTRACT
We investigate the problem of estimating the spatial resolution of
overhead imagery. More overhead imagery is becoming available
without such meta-data either because it was not collected in the
first place or was not preserved with the imagery. Knowing the
spatial resolution can be important for a range of automated image
understanding tasks such as object detection, semantic segmenta-
tion, etc. In this paper, we explore a regression framework with a
feature extraction frontend and a dilated convolution backend to
estimate the spatial resolution of an overhead image. We show that
a stacked auto-encoder frontend outperforms a standard convolu-
tion neural network feature extractor. In order to demonstrate our
approach, we construct an evaluation dataset consisting of a large
collection of very high-resolution overhead images with spatial
resolutions ranging from 0.15 to 1.0 meters per pixel.

CCS CONCEPTS
• Computing methodologies→ Scene understanding; Supervised
learning by regression; Neural networks.

KEYWORDS
spatial resolution estimation, deep learning regression, stacked
auto-encoder

ACM Reference Format:
Haolin Liang and Shawn Newsam. 2019. Estimating the Spatial Resolution
of Very High-Resolution Overhead Imagery. In 3rd ACM SIGSPATIAL In-
ternational Workshop on AI for Geographic Knowledge Discovery (GeoAI’19),
November 5, 2019, Chicago, IL, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3356471.3365241

1 INTRODUCTION
Knowing the spatial resolution, in terms of meters per pixel, for
example, of overhead imagery acquired from satellite, aerial, or,
more recently, drone platforms is important for the automated
analysis of the imagery. Most approaches to object detection or
scene classification assume the spatial resolution is known or, at
least, that the spatial resolution of the training and target images are
the same. It is a far more difficult task to design methods that work

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GeoAI’19, November 5, 2019, Chicago, IL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6957-2/19/11. . . $15.00
https://doi.org/10.1145/3356471.3365241

Figure 1: Our deep learning regression model takes an over-
head image as input and outputs an estimate of its spa-
tial resolution. We compare two different feature extraction
frontends, a stacked auto-encoder (SAE) and a standard con-
volutional neural network (CNN).

on images with unknown and possibly widely varying resolution;
i.e., the methods need to be scale invariant.

We therefore focus on the problem of estimating the spatial res-
olution of overhead imagery. This imagery has traditionally been
acquired in a formal, structured way so that the acquisition meta-
data is known and preserved. However, the increased ability to
capture overhead imagery, particularly by the public using drones,
means that the data’s provenance is often not known. Spatial reso-
lution is an important component of overhead image meta-data.

We take a bottom-up, data-driven approach and formulate the
problem as one of regression. The input is an overhead image and
the output is the estimated resolution in terms of meters per pixel.
Key to this approach are the features that are extracted from the
image in the regression pipeline. Deep learning approaches have
shown remarkable ability to learn features that are effective for a
range of image analysis tasks. We take motivation from this and use
a stacked auto-encoder (SAE) frontend to learn and extract features
which are then fed to a dilated convolution backend. We show the
SAE outperforms a standard convolutional neural network (CNN)
frontend for our regression problem. An overview of our model
is shown in figure 1. We evaluate our approach using a sizable
dataset of very high-resolution overhead images with a range of
resolutions.

2 RELATEDWORK
There has been very little work on estimating the spatial resolution
of overhead imagery likely, again, due to this being a novel problem.

Our regression framework is inspired by deep learning regression
approaches to other image analysis problems such as estimating
a person’s age [9] or the orientation of their head [1]. Deep learn-
ing regression has also been applied to crowd counting in single
surveillance images [5, 10, 12, 14, 15].

https://doi.org/10.1145/3356471.3365241
https://doi.org/10.1145/3356471.3365241

GeoAI’19, November 5, 2019, Chicago, IL, USA Haolin Liang and Shawn Newsam

SAEs have shown to be effective feature extractors for remote
sensing image analysis. A recent survey [4] lists a number of works
in which SAEs are used for remote sensing image classification.

To our knowledge, the only previous work on estimating the
spatial resolution of overhead imagery is our own [6]. That work
also uses deep learning regression but does not use an SAE frontend
for improved feature extraction. It also targets lower-resolution im-
agery and therefore is not appropriate for the very high-resolution
imagery from drones which is a primary objective of this paper.

3 METHODOLOGY
We formulate estimating the spatial resolution of an overhead im-
age, in meters per pixel, as a single value regression problem. Our
approach is data driven in that our regression model is trained on a
set of labelled data with the labels being the spatial resolution. Be-
low, we describe our model, noting, in particular, the two different
frontend feature extractors we consider. Please see the overview of
our model in figure 1 for reference.

3.1 VGG-16 Frontend
For our basline frontend feature extractor, we use a VGG net-
work [11] which is a deep CNN originally designed for image classi-
fication. We use a VGG-16 CNN pretrained on the ImageNet dataset.
Despite being trained for image classification using the ImageNet
dataset, this network has been shown to have learned effective im-
age features for a number of image analysis problems. It therefore
represents a good baseline for our work. We feed the feature maps
from final the convolutional layer of the VGG-16 network to the
dilated convolution backend.

3.2 Auto-Encoder Frontend
Auto-encoders are unsupervised CNNmodels that have been shown
to be effective for dimensionality reduction or feature learning. As
shown in figure 2, they consist of an encoder, which reduces the
dimensionality of the input to produce an embedding, and a decoder,
which reconstructs the input from this embedding. The idea is that
this embedding, often referred to as the hidden layer, is a faithful
representation of the input if it can be used to reconstruct the
output. A major advantage of auto-encoders is that they can be
trained in an unsupervised fashion since the training data does not
need to be labelled. The loss function used during iterative learning
is based on the similarity between the input and its reconstruction.
This allows auto-encoders to be trained using large collections of
unlabelled data.

3.3 Stacked Auto-Encoder Frontend
SAEs are formed using multiple nested auto-encoders. In particular,
the hidden layer (embedding) of the outermost auto-encoder is
treated as the input to another auto-encoder. This is then repeated
for the desired depth. The hidden layer of the deepest auto-encoder
is used as the final embedding. This representation has been shown
to be more effective than that of single layer auto-encoders. SAEs
are trained in a greedy fashion. Each sub-AE is trained independent
of its encapsulating layers.

We use an SAE with three sub-AEs as shown in figure 3.X and X̂
represent the input and reconstructed images respectively. The hi

Figure 2: Auto-encoder network.

Figure 3: Our SAE model. See the text for details.

represent the hidden layers. These are input to the next sub-AE and
reconstructed as ĥi . For clarity, we do not show the encoder and
decoders in this figure. The encoders consist of one convolutional
layer with a kernel of size 3 followed by a maxpooling layer with a
kernel size of 2. The decoders reverse this through deconvolution.
The goal is to train the SAE so that h4 is an effective representation
of the input image.

3.4 Dilated Convolution Backend
The output of the feature extractor frontend is input to a dilated
convolution backend. The motivation here is that the receptive field
increases quadratically with layer depth in standard convolution
whereas it increases exponentially in dilated convolution. The re-
ceptive field is how much a particular feature map element “sees” of
the two-dimensional input. A larger receptive field has been shown
to improve performance for a number of tasks such as semantic
segmentation [2]. Please see [13] for more on dilated convolution.

As shown in figure 1, our model contains five deconvolutional
layers. The output of the final layer is input to a fully-connected
layer to complete the regression.

Estimating the Spatial Resolution of Very High-Resolution Overhead Imagery GeoAI’19, November 5, 2019, Chicago, IL, USA

4 EVALUATION DATASET
We compiled an evaluation dataset of very high-resolution overhead
imagery with four difference spatial resolutions, 0.15, 0.3, 0.6, and
1.0 meters per pixel, from four different sources.

4.1 COWC
The Cars Overhead With Context (COWC) [8] dataset consists
of overhead imagery with a spatial resolution of 0.15 m. It is an-
notated with positive and negative car instances but we do not
utilize this information. The images are of six different locations:
Toronto (Canada), Selwyn (New Zealand), Potsdam and Vaihingen
(Germany), and Columbus and Utah (United States). We use 26 out
of 27 image scenes in this dataset. The images vary in size from
2220 × 2220 to 18075 × 18400 pixels. The top row of figure 4 shows
sample COWC subimages.

4.2 INRIA
The Inria Aerial Image Labeling Dataset (INRIA) [7] consists of
aerial orthorectified color imagery with a spatial resolution of 0.3
m. It has ground truth labeling two semantic regions, building and
non-building, but we do not utilize this information. The dataset
covers a range of urban scenes in the United States in Europe
ranging from densely populated areas to small towns. We use the
entire dataset which consists of 360 images of size 1500 × 1500
pixels. The second row of figure 4 shows sample INRIA subimages.

4.3 NAIP
The United States Geological Survey National Agriculture Imagery
Program (NAIP) collection consists of country-wide color aerial
imagery of the US. We use 189 NAIP scences, 109 that have a spatial
resolution of 0.6 m and 80 with a resolution of 1.0 m. The images
vary in size from 5408 × 7616 to 10320 × 12190 pixels. The last two
rows of figure 4 shows sample NAIP subimages.

4.4 Cross Sampling Between Datasets
To prevent our model from simply learning the one-to-one corre-
spondence between data source and spatial resolution, our evalua-
tion dataset consists of the original as well as resampled images.

We first tile the original images into 256 × 256 native resolution
patches using 50% overlap. Table 1 shows the number of native
resolution patches. We then form additional patches at each reso-
lution by resampling random image regions from the other three
resolutions. We use bilinear downsampling and upsampling. We
realize that using upsampled images is not ideal but we were not
able to find multiple sources for each resolution. We generate an
additional 50000 256 × 256 resampled patches for each resolution.

Our final evaluation dataset consists of 20000 training patches
and 2000 test patches for each resolution randomly sampled from
the native and resampled sets. This is summarized in table 1.

5 EXPERIMENTS & RESULTS
5.1 Training
The model training is perfomed in two steps, first the SAE frontend
and then the dilated convolution backend along with the regressor.

Figure 4: Sample subimages. Top row: 0.15 m COWC images;
second row: 0.3 m INRIA images; third row: 0.6 m NAIP im-
ages; bottom row: 1.0 m NAIP images. Columns from left
to right represent parking lot, vegetation, housing, and road
regions to illustrate the variation in spatial resolution.

5.1.1 Training the SAE Frontend. The SAE frontend feature ex-
tractor is trained using all the image patches, both the native and
resampled resolutions. Again, the objective during training is for the
SAE to reconstruct the image patches from the learned embedding.
We train the SAE for 100 epochs.

5.1.2 Training the Deconvolution Backend and Regressor. Once the
frontend feature extractor is fixed as either the trained SAE or
the pretrained VGG-16, we then train the rest of the model. This
is done using the 80000 training image patches. The loss function
during training is the L1 loss between the true and estimated spatial
resolution of the training images. Two models are trained, one with
the SAE frontend and the other with the VGG-16 frontend. We train
each model for 100 epochs using the Adam optimizer [3] with a
learning rate of 0.001. We also apply dropout with rate 0.5 to the
fully connected layer to help prevent overfitting.

5.2 Evaluation
We measure performance by computing the average L1 error be-
tween the true and estimated spatial resolution over the 8000 test
image patches

L1error =
1
m

m∑
i=1

|Yi − Ŷi |

where Yi denotes the true resolution of test image i , Ŷi is the es-
timated resolution provided by the model, and m = 8000 is the
number of test images.

5.3 Results
Table 2 compares the average error of the baseline VGG-16 and
proposed SAE regression models. While both models do well at

GeoAI’19, November 5, 2019, Chicago, IL, USA Haolin Liang and Shawn Newsam

Table 1: The evalution dataset.

Resolution (m/pixel) # Native Patches # Resampled Patches # Training Set # Testing Set
0.15 70496 50000 20000 2000
0.3 225000 50000 20000 2000
0.6 348222 50000 20000 2000
1.0 101520 50000 20000 2000

Table 2: Results on the test set.

Model Average L1 error (m)
VGG-16 0.0246
SAE 0.0224

Table 3: Results broken down by resolution. The middle col-
umn is the average estimated resolution. All values are in
meters.

True resolution Estimated resolution L1 error
0.15 0.16 0.014
0.3 0.29 0.013
0.6 0.60 0.030
1.0 0.97 0.035

estimating the spatial resolution, both are within 0.03 m of the true
resolution on average over the entire test set, the SAE model results
in an 8.9% relative performance improvement.

Table 3 breaks down the performance of the SAE model by reso-
lution. The middle column shows the average estimated resolution
which is shown to be very close to the true resolution in all cases.
The average L1 error is shown to increase with resolution. One
interesting observation is that the model tends to be biased at the
limits of the range of resolutions. It overestimates at 0.15 m and
underestimates at 1.0 m. It actually shows no bias at 0.6 m. We
suspect this is a limitation of the regression model that would need
to be accounted for by training on a dataset that extends beyond
the range of target resolutions.

Finally, we show examples of image patches on which the model
performs well (top row) and on which the model performs poorly
(bottom row). As expected, the model performs worse on homoge-
neous images whose content provides little information regarding
scale. This is a challenge not only for our method but any that relies
only on the image content.

6 CONCLUSION
We investigated deep learning regression for estimating the spatial
resolution of overhead imagery. This is a new but increasingly
important problem as more imagery is collected through informal
means. We showed an SAE feature extractor frontend improves
performance over a general CNN frontend. We demonstrated the
effectiveness of our approach using a dataset of very high-resolution
images range from 0.15 to 1.0 meters per pixel.

Figure 5: Images on which our approach performs well (top)
and performs poorly (bottom).

7 ACKNOWLEDGEMENT
This work was funded in part by a National Science Foundation
grant, #IIS-1747535. We gratefully acknowledge the support of
NVIDIA Corporation through the donation of the GPU card used
in this work.

REFERENCES
[1] Byungtae Ahn, Jaesik Park, and In So Kweon. 2014. Real-time head orientation

from a monocular camera using deep neural network. In ACCV.
[2] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and

Alan L Yuille. 2018. Deeplab: Semantic image segmentation with deep convolu-
tional nets, atrous convolution, and fully connected CRFs. ITPIDJ 40, 4 (2018).

[3] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv:1412.6980 (2014).

[4] Ying Li, Haokui Zhang, Xizhe Xue, Yenan Jiang, and Qiang Shen. 2018. Deep
learning for remote sensing image classification: A survey. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 8, 6 (2018).

[5] Yuhong Li, Xiaofan Zhang, and Deming Chen. 2018. CSRNet: Dilated convolu-
tional neural networks for understanding the highly congested scenes. In CVPR.

[6] Haolin Liang and Shawn Newsam. 2019. Estimating The Spatial Resolution of
Overhead Imagery Using Convolutional Neural Networks. In ICIP.

[7] Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat, and Pierre Alliez.
2017. Can Semantic Labeling Methods Generalize to Any City? The Inria Aerial
Image Labeling Benchmark. In IGARSS.

[8] T Nathan Mundhenk, Goran Konjevod, Wesam A Sakla, and Kofi Boakye. 2016.
A large contextual dataset for classification, detection and counting of cars with
deep learning. In ECCV.

[9] Zhenxing Niu, Mo Zhou, Le Wang, Xinbo Gao, and Gang Hua. 2016. Ordinal
regression with multiple output CNN for age estimation. In CVPR.

[10] Deepak Babu Sam, Shiv Surya, and R Venkatesh Babu. 2017. Switching convolu-
tional neural network for crowd counting. In CVPR, Vol. 1.

[11] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv:1409.1556 (2014).

[12] Vishwanath A Sindagi and Vishal M Patel. 2017. Generating high-quality crowd
density maps using contextual pyramid CNNs. In ICCV.

[13] Fisher Yu and Vladlen Koltun. 2015. Multi-scale context aggregation by dilated
convolutions. arXiv:1511.07122 (2015).

[14] Cong Zhang, Hongsheng Li, Xiaogang Wang, and Xiaokang Yang. 2015. Cross-
scene crowd counting via deep convolutional neural networks. In CVPR.

[15] Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao, and Yi Ma. 2016.
Single-image crowd counting via multi-column convolutional neural network.
In CVPR.

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 VGG-16 Frontend
	3.2 Auto-Encoder Frontend
	3.3 Stacked Auto-Encoder Frontend
	3.4 Dilated Convolution Backend

	4 Evaluation Dataset
	4.1 COWC
	4.2 INRIA
	4.3 NAIP
	4.4 Cross Sampling Between Datasets

	5 Experiments & Results
	5.1 Training
	5.2 Evaluation
	5.3 Results

	6 Conclusion
	7 Acknowledgement
	References

