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Abstract—This paper investigates local invariant features for
geographic (overhead) image retrieval. Local features are par-
ticularly well suited for the newer generations of aerial and
satellite imagery whose increased spatial resolution, often just
tens of centimeters per pixel, allows a greater range of objects
and spatial patterns to be recognized than ever before. Local
invariant features have been successfully applied to a broad range
of computer vision problems and, as such, are receiving increased
attention from the remote sensing community particularly for
challenging tasks such as detection and classification. We perform
an extensive evaluation of local invariant features for image re-
trieval of land-use/land-cover (LULC) classes in high-resolution
aerial imagery. We report on the effects of a number of design
parameters on a bag-of-visual-words (BOVW) representation in-
cluding saliency- versus grid-based local feature extraction, the
size of the visual codebook, the clustering algorithm used to create
the codebook, and the dissimilarity measure used to compare
the BOVW representations. We also perform comparisons with
standard features such as color and texture. The performance
is quantitatively evaluated using a first-of-its-kind LULC ground
truth data set which will be made publicly available to other
researchers. In addition to reporting on the effects of the core
design parameters, we also describe interesting findings such as
the performance-efficiency tradeoffs that are possible through the
appropriate pairings of different-sized codebooks and dissimilar-
ity measures. While the focus is on image retrieval, we expect our
insights to be informative for other applications such as detection
and classification.

Index Terms—Bag of visual words, content-based image re-
trieval, high-resolution overhead image analysis, land cover, land
use, local invariant features, remote sensing.

I. INTRODUCTION

THE increased spatial resolution and coverage of over-
head imagery from satellites and aircraft provide novel

opportunities for advancing the field of remote sensed image
analysis, particularly with regard to automated image under-
standing. A greater range of objects and spatial patterns can
be observed than ever before due to the increased resolution.
Fig. 1(a)–(d) shows images with spatial resolutions of 30 m,
1 m, 2 ft (approximately 60 cm), and 1 ft (approximately 30 cm).
The image in Fig. 1(a) is from Landsat V which was launched
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Fig. 1. Images with resolutions of (a) 30 m, (b) 1 m, (c) 2 ft (approximately
60 cm), (d) and 1 ft (approximately 30 cm). The increased resolution of
newer imagery supports analysis methods that were not possible before such
as approaches based on local features which characterize individual objects and
their components instead of patterns.

in 1999. The images in Fig. 1(b) and (c) are aerial images with
approximately the same resolutions as IKONOS which was
launched in 2000 and Quickbird which was launched in 2001.
Imagery with the resolution of the aerial image in Fig. 1(d) or
even higher is now available for large geographic regions.

The increased resolution of the newer imagery supports
analysis methods which were not possible before. This paper
investigates one such class of methods wherein local image
regions are characterized by features designed to be invariant
to differences in appearance resulting from geometric transfor-
mations such as rotation or scaling as well as from photometric
transformations such as changes in illumination. The image
regions themselves are also detected in an invariant manner.
These so-called local invariant features have been successfully
applied to a range of standard (nongeographic) computer vision
problems, and there has been increasing interest in using them
for overhead image analysis.

The fundamental contribution of this paper is an investigation
into local invariant features for overhead image retrieval. To
our knowledge, it is the first study of its kind. We perform an
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extensive evaluation of local invariant features for image
retrieval of land-use/land-cover (LULC) classes in high-
resolution aerial imagery. We report on the effects of a num-
ber of design parameters on a bag-of-visual-words (BOVW)
representation including saliency- versus grid-based local fea-
ture extraction, the size of the visual codebook, the clustering
algorithm used to create the codebook, and the dissimilarity
measure used to compare the BOVW representations. We also
perform a comparison with standard features such as color and
texture. The performance is quantitatively measured using a
first-of-its-kind LULC ground truth data set which will be made
publicly available to other researchers. While the focus is on
image retrieval, we expect our insights to be informative for
other applications of local invariant features such as detection
and classification.

II. BACKGROUND

The remote sensing community has begun to realize the
potential for local feature-based analysis of high-resolution
imagery. A number of methods have been developed to perform
image matching for registration [1]–[7] and change detection
[8], [9]. Closer to the work presented in this paper, researchers
have also investigated local features for detection and classifi-
cation. Sirmacek and Unsalan [10]–[12] use local features to
detect buildings and urban areas in 1-m resolution IKONOS
imagery. Xu et al. [13] compare quantized color and texture fea-
tures with local features for classifying 0.25-m resolution aerial
image regions into four LULC classes. Chen et al. [14] also
compare local features with standard color and texture features
to classify 0.5-m Digital Globe imagery into 19 LULC classes.
Skurikhin [15] investigates attention-based saliency detection
to perform local feature-based classification of 0.5-m resolution
Digital Globe and Google Earth imagery into anthropogenic
or natural regions. Gleason et al. [16] and Vatsavai et al. [17]
use quantized local features to detect complex geospatial ob-
jects such as nuclear and coal power plants in 1-m resolution
Digital Globe imagery. Ozdemir and Aksoy [18] investigate
graph-based spatial arrangements of quantized local features
to classify 1-m resolution IKONOS imagery into eight LULC
classes. Bordes and Prinet [19] investigate spatial correlograms
of quantized local features to classify high-resolution Digital
Globe imagery into eight LULC classes.

Our work on local invariant features differs from that above
in three fundamental ways. First, we perform a thorough inves-
tigation into a range of design parameters such as the size of the
visual dictionary used to quantize the local features, whether
k-means clustering should be applied using the Euclidean or
Mahalanobis distance when constructing the dictionary, and the
relative performance of nine different dissimilarity measures
for comparing histograms of quantized local features. We feel
such an investigation is timely due to the increased application
of local invariant features for overhead image analysis. (Indeed,
ours is the most thorough investigation of these parameters
for any image analysis problem, not just overhead imagery.)
Second, we consider 21 different LULC classes, significantly
more than any of the above works except that of Chen et al. [14]
who consider 19. Third, we perform our evaluations on high-

resolution aerial imagery that is in the public domain. We
construct a ground truth data set of the 21 classes using imagery
acquired from the U.S. Geological Survey (USGS) National
Map. We will make this data set publicly available to other
researchers as a standard for comparing methods (and thus this
paper also establishes benchmarks on this data set for other
researchers to improve upon). Such standardized data sets have
proven critical for developing improved image classification
techniques in non-overhead imagery (e.g., the Caltech 101 [20]
and 256 [21] object class image data sets, and the PASCAL
visual object classes data sets [22]). To our knowledge, ours
is the first publicly available high-resolution LULC evaluation
data set.

Content-based image retrieval (CBIR) has been an active
area of research in computer vision since the mid-1990s. Moti-
vated by the need to provide effective access to the growing col-
lections of digital images, systems starting with IBM’s Query
by Image Content from 1995 [23] have been proposed which
automatically annotate images using visual features such as
color, texture, and shape. While the shortcomings of these low-
level features to capture high-level, semantic concepts has been
well-documented, CBIR remains an effective framework in
which to investigate visual features particularly for computing
image similarity. Pair-wise image comparison is fundamental
to a range of kernel-based machine learning techniques such
as support vector machines and so investigations such as ours
stand to inform applications beyond retrieval.

A number of works have investigated different features for
performing image retrieval in large collections of geographic
images. Similar to other domains, researchers have investi-
gated intensity features [24], spectral (color) features [25],
[26], shape features [27]–[30], structural features [31], [32],
texture features [29], [30], [33]–[37], and combinations thereof
such as multi-spectral texture features [38]. However, to our
knowledge, ours is the first work to investigate local invariant
features for geographic image retrieval.

To summarize, the novel contributions of this paper include:

• The first study of local invariant features for content-
based geographic image retrieval, in particular showing
their superiority over standard features such as color and
texture.

• The most thorough investigation of the effects of different
design parameters of local invariant features for any image
analysis problem, not just overhead imagery.

• A first-of-its-kind 21 LULC data set which will be made
publicly available to other researchers. We anticipate this
will serve as a standardized data set for comparing tech-
niques, something which has greatly helped other applica-
tions of image analysis but has largely been lacking in the
remote sensing field.

III. LOCAL INVARIANT FEATURES

A. Desirable Properties

There are generally two steps to using local invariant features
for image analysis. First, a detection step identifies interesting
locations in the image usually according to some measure of
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saliency. These are termed interest points. Second, a descriptor
is computed for each of the image patches centered at the
interest points. The following describes the properties of the
detection and descriptor that contribute to the effectiveness of
local invariant features.

Local: The local property of the features makes their use
robust to two common challenges in image analysis. First, they
do not require the challenging preprocessing step of segmen-
tation. The descriptors are not calculated for image regions
corresponding to objects or parts of objects but instead for
image patches at salient locations. Second, since objects are not
considered as a whole, the features provide robustness against
occlusion. They have been shown to reliably detect objects in
cluttered scenes even when only portions of the objects are
visible. Note that occlusion includes the case where part of an
object is hidden as well as the case where the object is cropped
by the edge of the image.

Invariance: Local image analysis has a long history includ-
ing corner and edge detection [39]. However, the success of
the more recent approaches to local analysis is largely due to
the invariance of the detection and descriptors to geometric and
photometric image transformations. Note that it makes sense
to discuss the invariance of both the detector and descriptor.
An invariant detector will identify the same locations inde-
pendent of a particular transformation. An invariant descriptor
will remain the same. Often, the detection step estimates the
transformation parameters necessary to normalize the image
patch (to a canonical orientation and scale for example) so
that the descriptor itself need not be completely invariant. Geo-
metric image transformations result from changes in viewing
geometry and include translation, Euclidean (translation and
rotation), similarity (translation, rotation, and uniform scaling),
affine (translation, rotation, non-uniform scaling, and shear),
and projective, the most general linear transformation in which
parallel lines are not guaranteed to remain parallel. While affine
invariant detectors have been developed [40], we choose a
detector that is invariant up to similarity transformations only
for two reasons. First, remote sensed imagery is acquired at a
relatively fixed viewpoint (overhead) which limits the amount
of non-uniform scaling and shearing. Second, affine invariant
detectors have been shown to perform worse than similarity
invariant descriptors when the transformation is restricted to
translation, rotation, and uniform scaling [40]. Invariance to
translation and scale is typically accomplished through scale-
space analysis with automatic scale selection [41]. Invariance to
rotation is typically accomplished by estimating the dominant
orientation of the gradient of a scale-normalized image patch.
We construct the evaluation data set in the experiments below to
contain regions and objects that occur at arbitrary and varying
orientations as is generally the case in overhead imagery.

Photometric image transformations result from variations
in illumination intensity and direction. Photometric invariance
is typically obtained in both the detection and descriptor by
simply modeling the transformations as being linear and re-
lying on changes in intensity rather absolute values. Utilizing
intensity gradients accounts for the possible non-zero offset in
the linear model and normalizing these gradients accounts for
the possible non-unitary slope. We construct the data set used

in the experiments below to contain images acquired under a
range of different illumination conditions and from a number
of different optical sensors.

Robust yet Distinctive: The features should be robust to
other image transformations for which they are not designed
to be invariant through explicit modeling. The detection and
descriptor should not be greatly affected by modest image
noise, image blur, discretization, compression artifacts, etc. Yet,
for the features to be useful, the detection should be sufficiently
sensitive to the underlying image signal and the descriptor suf-
ficiently distinctive. Comprehensive evaluation [42] has shown
that local invariant features achieve this balance. The evaluation
data set below contains images of varying quality.

Density: While detection is image dependent, it typically
results in a large number of features. This density of features
is important for robustness against occlusion as well as against
missed and false detections. Of course, the large number of
features that result from natural images present representation
and computational challenges. The histograms of quantized
descriptors used in this work have shown to be an effective and
efficient method to help mitigate the associated costs.

Efficient: The extraction of local invariant features can be
made computationally very efficient. This is important when
processing large collections of images, such as is common in
geographic image analysis, as well as for real-time applica-
tions. Real-time object detection using local features has been
demonstrated in prototype systems [43] as well as in commer-
cial products such as the SnapTell camera-phone recognition
application [44].

B. SIFT Features

We choose David Lowe’s scale invariant feature transform
(SIFT) [45], [46] as the interest point detector and descrip-
tor. While there are other detectors, such as the Harris-
Laplace/Affine [40], Hessian-Laplace/Affine [40], Kadir and
Brady’s Saliency Detector [47]; other descriptors, such as
shape context [48], steerable filters [49], PCA-SIFT [50], spin
images [51], moment invariants [52], and cross-correlation;
and other detector/descriptor combinations, such as maximally
stable extremal regions [53] and speeded up robust features
[54], we choose the SIFT detector and descriptor for the fol-
lowing reasons. First, the SIFT detector is translation, rotation,
and scale invariant which is the level of invariance needed
for our application as described above. Second, an extensive
comparison with other local descriptors found that the SIFT
descriptor performed the best in an image matching task [42].
We note, however, that the primary contribution of this paper
is to demonstrate that local invariant features are effective for
geographic image retrieval and to perform a thorough investi-
gation into the BOVW design parameters. We expect that our
findings to be largely independent of the underlying detector
and descriptor.

As mentioned above, SIFT descriptors are extracted from
an image in two steps. First, a detection step locates points
that are identifiable from different views. This process ideally
locates the same regions in an object or scene regardless of
viewpoint or illumination. Second, these locations are described
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by a descriptor that is distinctive yet invariant to viewpoint
and illumination. SIFT-based analysis exploits image patches
that can be found and characterized under different image
acquisition conditions.

1) Detector: The SIFT detection step is designed to find
image regions that are salient not only spatially but also across
different scales. Candidate locations are initially selected from
local extrema in difference of Gaussian (DoG) filtered images
in scale space. The DoG images are derived by subtracting two
Gaussian blurred images with different σ

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ)

where L(x, y, σ) is the image convolved with a Gaussian kernel
with standard deviation σ, and k represents the different sam-
pling intervals in scale space. Each point in the 3-D DoG scale
space is compared with its eight spatial neighbors at the same
scale, and with its 18 neighbors at adjacent higher and lower
scales. The local maximum or minimum are further screened
for minimum contrast and poor localization along elongated
edges. The last step of the detection process uses a histogram of
gradient directions sampled around the interest point to estimate
its orientation. This orientation is used to align the descriptor to
make it rotation invariant (RI).

2) Descriptor: A SIFT descriptor is extracted from the im-
age patch centered at each interest point. The size of this patch
is determined by the scale of the corresponding extremum in
the DoG scale space. (For our evaluation data set below, most
patches range in diameter from 6 to 50 pixels with a few that are
larger.) This makes the descriptor scale invariant. The feature
descriptor consists of histograms of gradient directions com-
puted over a 4 × 4 spatial grid. The interest point orientation
estimate is used to align the gradient directions to make the
descriptor RI. The gradient directions are quantized into eight
bins so the final feature vector has dimension 128 (4× 4× 8).
This histogram-of-gradients descriptor can be roughly thought
of a summary of the edge information in a scale and orientation
normalized image patch centered at the interest point.

We also consider extracting SIFT descriptors from a fixed
grid instead of from the salient interest points. We refer to this
as grid-based feature extraction. It is often all called dense
sampling as it typically results in a larger number of descriptors
since interest points are not detected in non-salient regions
(of uniform intensity for example). We refer to the standard
approach as saliency-based feature extraction.

C. BOVW Representation

The SIFT detector, like most local feature detectors, results in
a large number of interest points. This density is important for
robustness but presents a representation challenge particularly
since the SIFT descriptors have 128 dimensions. We adopt
a standard approach, termed BOVW [55], to summarize the
descriptors without regard to where they appear in an image.
The analogy to representing text documents as word count
frequencies is made possible by quantizing the 128 dimension
SIFT descriptors. We apply standard k-means clustering to a
large number of SIFT descriptors to create a dictionary of visual

words or codebook. Descriptors extracted from novel images
are then quantized by assigning the label of the closest cluster
centroid or codeword. The final representation is the frequency
or histogram of the codewords in an image

hINT = [t0, t1, . . . , tk−1]

where ti is number of times codeword i appears. In the ex-
periments below, we investigate a number of different BOVW
design parameters such as the size of the visual dictionary (k
in the k-means clustering), the number of SIFT descriptors to
which the clustering is applied, and whether the Mahalanobis or
Euclidean measure is used to compute the descriptor-to-cluster-
centroid distance for point (re)assignment during the iterative
k-means algorithm and during quantization.

IV. DATA SET

We perform quantitative evaluation of retrieval performance
using a manually constructed ground truth data set. The data set
consists of images of 21 LULC classes selected from aerial or-
thoimagery with a pixel resolution of 30 cm. Large images were
downloaded from the USGS National Map of the following
US regions: Birmingham, Boston, Buffalo, Columbus, Dallas,
Harrisburg, Houston, Jacksonville, Las Vegas, Los Angeles,
Miami, Napa, New York, Reno, San Diego, Santa Barbara,
Seattle, Tampa, Tucson, and Ventura. 100 images measuring
256 by 256 pixels were manually selected for each of the
following 21 classes: agricultural, airplane, baseball diamond,
beach, buildings, chaparral, dense residential, forest, freeway,
golf course, harbor, intersection, medium density residential,
mobile home park, overpass, parking lot, river, runway, sparse
residential, storage tanks, and tennis courts. Five samples of
each class are shown in Fig. 2. The images downloaded from
the National Map are in the red-green-blue (RGB) color space.
Both RGB and grayscale versions of the 2100 ground truth im-
ages are used where Gray=0.299∗R+0.587∗G+0.114∗B.

A significant benefit of using aerial orthoimagery from the
USGS National Map is that the data is already in the public
domain. Thus, our 21 class LULC data set is the largest data
set of its kind that can be made publicly available to other
researchers. We will make the data set available through our
research group’s website.

V. EXPERIMENTS

This section describes the image retrieval protocol used
in the experiments. It first describes the standard color and
texture features against which the local features are compared.
It then describes the different configurations of the BOVW
representation used to summarize the local features for an
image. The different dissimilarity measures considered are then
described. Finally, the retrieval performance metrics used for
the quantitative evaluation are described.

A. Standard Features

Three standard image features are considered: simple statis-
tics, homogeneous texture, and color histogram features.
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Fig. 2. Ground truth data set contains 100 images from each of 21 land-use/land-cover classes. Five samples from each class are shown above. The data set will
be made publicly available to other researchers. (a) Agricultural; (b) airplane; (c) baseball diamond; (d) beach; (e) buildings; (f) chaparral; (g) dense residential;
(h) forest; (i) freeway; (j) golf course; (k) harbor; (l) intersection; (m) medium density residential; (n) mobile home park; (o) overpass; (p) parking lot; (q) river;
(r) runway; (s) sparse residential; (t) storage tanks; (u) tennis courts.
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Fig. 3. Average number of features per class for saliency-based local feature extraction.

1) Simple Statistics: A 2-D feature vector is computed for
each ground truth image consisting of the mean and standard
deviation of the grayscale values:

fSS = (μ, σ).

This is referred to as the simple statistics feature and serves as
a baseline for the experiments.

2) Homogeneous Texture: Homogeneous Texture Descrip-
tors compliant with the MPEG-7 Multimedia Content Descrip-
tion Interface [56] are extracted using banks of Gabor filters
tuned to five scales and six orientations. A 60-dimensional
feature vector is formed from the mean and standard deviation
of the 30 filters

ftexture = [μ11, σ11, μ12, σ12, . . . , μ1S , σ1S , . . . , μRS , σRS ]

where μrs and σrs are the mean and standard deviation of the
output of the filter tuned to orientation r and scale s. To account
for differences in range, normalized versions of the features are
also produced in which each of the 2RS components is scaled
to have a mean of zero and a standard deviation of one over the
ground truth data set.

3) Color Histogram: Color histogram features are com-
puted in three color spaces: RGB, hue lightness saturation
(HLS), and CIE Lab. Each dimension is quantized into eight
bins for a total histogram feature length of 512. The histograms
are normalized to sum to one (L1 norm equal to one). This
results in three different color histogram features: fRGB , fHLS ,
and fLab.

B. Local Invariant Features

128 dimensional local invariant descriptors are extracted
for each ground truth image using the SIFT descriptor algo-
rithm. As described above, we consider two extraction modes,
saliency-based extraction using the SIFT detector and grid-
based extraction. Saliency-based extraction results in a mean
of 668 descriptors for each 256 × 256 image over all classes.
The runway class tends to have the fewest descriptors per image

with a mean of 218 and the forest class has the most with a mean
of 1117. Fig. 3 indicates the per class means.

Grid-based feature extraction is performed using three differ-
ent grid spacings, 4-pixel, 8-pixel, and 16-pixel, which result in
3721, 961, and 256 features per image, respectively.

The SIFT descriptors are quantized using codebooks result-
ing from applying k-means clustering to a large number of SIFT
descriptors sampled at random from the large aerial images
from which we created the evalution data set. The 2100 images
in the evaluation data set represent less than four percent of the
total area in the large images. Thus, for all practical purposes,
there is no overlap between the images used to create the
codebooks and the evaluation data set. The codebooks are thus
not specific to the particular images in the evaluation data set.
Further, the codebooks are not specific to the 21 classes (as they
are based on SIFT features randomly sampled from the diverse
large aerial images), and we would expect them to generalize to
additional classes.

Codebooks are created using k-means for:

• A wide range of different numbers of clusters (k): 10, 25,
50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450,
500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000,
6000, 7000, 8000, 9000, 10 000, 15 000, 20 000.

• Different-sized sets of randomly sampled points: 100 thou-
sand and one million.

• Different distance measures: Euclidean and Mahalanobis.

Each clustering is performed ten times using a different set
of randomly sampled points.

SIFT histogram features are calculated for each ground truth
image by using a codebook to quantize the SIFT descriptors
extracted from the image. The histogram features thus range
in length from 10 to 20 000 components. Three versions of
the histogram features are considered: 1) unnormalized SIFT
histogram features which simply contain the codeword counts;
2) L1 normalized SIFT histogram features where the compo-
nents are normalized to sum to one; and 3) L2 normalized SIFT
histogram features where the components are normalized so the
feature vectors have length one.
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C. Dissimilarity Measures

Each image in the ground truth data set is represented
by a multidimensional feature vector. This is either a 2-D
simple statistics feature, a 60-dimensional texture feature, a
512-dimensional color histogram feature, or a k-dimensional
SIFT histogram feature where k is the size of the codebook used
to quantize the SIFT descriptors. The dissimilarity measure
used to compare two images depends on the type of feature.
(While a few of the measures below are technically similarity
measures, we refer to them as dissimilarity measures for con-
sistency. A similarity measure can be treated as a dissimilarity
measure for retrieval by simply reversing the ranking of the
retrieved set.)

1) Simple Statistics: The dissimilarity between two images
with simple statistics features f1 and f2 is computed using the
L2 or Euclidean distance

dSS(f1, f2) = ‖f1− f2‖2 =
√

(μ1− μ2)2 + (σ1− σ2)2.

2) Texture: The default dissimilarity between two images
with texture features f1 and f2 is also computed using the L2
distance

dtexture(f1, f2) = ‖f1− f2‖2 =

√√√√2RS∑
i=1

(h1i − h2i)2.

This results in an orientation (and scale) sensitive dissimilarity
measure. Orientation invariant similarity is possible by using a
modified distance function

dRI(f1, f2) = min
r∈R

∥∥f1〈r〉 − f2
∥∥
2

where f〈r〉 represents f circularly shifted by r orientations

f〈r〉 =
[
(fr1, fr2, . . . , frS),

(
f(r+1)1, f(r+1)2, . . . , f(r+1)S

)
,

. . . , (fR1, fR2, . . . , fRS), (f11, f12, . . . , f1S), . . . ,

(
f(r−1)1, f(r−1)2, . . . , f(r−1)S

)]
.

Note that parentheses have been added for clarity. We refer
to this as the RI texture distance measure. Conceptually, this
distance function computes the best match between rotated
versions of the images without repeating the feature extraction.
The granularity of the rotations is of course limited by the filter
bank construction.

3) Color Histogram: A number of different histogram
distance measures are used to compute the dissimilarity be-
tween pairs of images with respect to color histogram fea-
tures, including: Bhattacharyya, chi-square, correlation, cosine,
inner product, intersection, L1, L2, and Earth Mover’s Dis-
tance (EMD). For two images with color histogram features

f1 and f2 of dimension d, the first eight of these are as
follows:

dBhattacharyya =

√√√√√1−
d∑

i=1

√
f1if2i√∑d

j=1 f1j
∑d

k=1 f2k

dchi−square =

d∑
i=1

(f1i − f2i)
2

f1i + f2i

dcorrelation =

∑d
i=1 f1

′
if2

′
i√∑d

j=1 f1
′
jf2

′
j

where f ′ = f − 1

d

d∑
i=1

f

dcosine =

∑d
i=1 f1if2i√∑d

j=1 f1
2
j

∑d
k=1 f2

2
k

dinnerproduct =

d∑
i=1

f1if2i

dintersection =

d∑
i=1

min(f1i, f2i)

dL1 = ‖f1− f2‖1 =

d∑
i=1

‖f1i − f2i‖

dL2 = ‖f1− f2‖2 =

√√√√ d∑
i=1

(f1i − f2i)2.

The EMD [57] measures the distance between two distribu-
tions, in our case histograms, by viewing the distributions as
“piles of dirt” and computing the cost of turning one pile into
another. The cost is the amount of dirt times the distance it
is moved. We consider two cases. One, the default, in which
the distance between histogram bins is simply the Euclidean
distance between the bin indices (the color histograms are
3-D). In the other case, a cost matrix indicates the actual
distance between histogram bins in color space.

4) SIFT Histogram: The same histogram distance measures
are used to compare the SIFT histogram features. Only the
cost matrix version of the EMD is used as the bin indices
of the SIFT histogram features provide no information on the
relations between the bins. The cost matrix is computed as
the Euclidean distances between the 128-dimensional centroids
corresponding to the bins.

D. Retrieval Performance

The features and associated dissimilarity measures are used
to perform image retrieval as follows. Let T be a collection of
M images; let fm be the feature vector extracted from image
m, where m ∈ 1, . . . ,M ; let d(·, ·) be a distance function
defined on the feature space; and let fquery be the feature vector
corresponding to a given query image. Then, the image in T
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most similar to the query image is the one whose feature vector
minimizes the distance to the query’s feature vector

m∗ = argmin
1≤m≤M

d(fquery, fm).

Likewise, the k most similar images are those that result in
the k smallest distances when compared to the query image.
Retrieving the k most similar items is commonly referred to as
a k-nearest neighbor (kNN) query. (Note that this k is distinct
from the k used in the k-means clustering for creating the
codebooks.)

Given a ground-truth data set, there are a number of ways
to evaluate retrieval performance. A single measure of per-
formance that considers both the number and order of the
ground truth items that appear in the top retrievals is the
average normalized modified retrieval rank (ANMRR) which
was used extensively in the MPEG-7 standardization process
[56]. Consider a query q with a ground-truth size of NG(q).
The Rank(k) of the kth ground-truth item is defined as the
position at which it is retrieved. A number K(q) ≥ NG(q) is
chosen so that items with a higher rank are given a constant
penalty

Rank(k) =

{
Rank(k), if Rank(k) ≤ K(q)
1.25K(q), if Rank(k) > K(q).

K(q) is commonly chosen to be 2NG(q). The average rank
(AVR) for a single query q is then computed as

AV R(q) =
1

NG(q)

NG(k)∑
k=1

Rank(k).

To eliminate influences of different NG(q), the NMRR

NMRR(q) =
AV R(q)− 0.5 [1 +NG(q)]

1.25K(q)− 0.5 [1 +NG(q)]

is computed. NMRR(q) takes values between zero (indicating
whole ground truth found) and one (indicating nothing found)
irrespective of the size of the ground-truth for query q, NG(q).
Finally, the ANMRR can be computed for a set NQ of queries

ANMRR =
1

NQ

NQ∑
q=1

NMRR(q).

ANMRR ranges in value between zero to one with lower values
indicating better retrieval performance.

VI. RESULTS

Table I summarizes the best results for the different features
considered in this study in terms of ANMRR values averaged
over all 21 classes. The local invariant features are shown to
perform better than the standard features. The best performance
for the texture features results from using the RI measure
to compare unnormalized features. The best performance for
the color descriptors results from using the EMD cost matrix
measure to compare HLS histograms. The best performance
for the local descriptors results from using the L1 measure

TABLE I
SUMMARY OF BEST RESULTS AS MEASURED USING ANMRR VALUES

AVERAGED OVER THE 21 CLASSES. SEE SECTION VI FOR THE OPTIMAL

CONFIGURATIONS THAT PRODUCED THESE RESULTS

Fig. 4. Precision-recall curves for the different features. Saliency-based local
invariant features result in higher precision for all but the lowest recall levels.

TABLE II
PERFORMANCE OF TEXTURE FEATURES

to compare L1 normalized histograms based on a codebook
of 15 000 words created using k-means clustering with the
Euclidean distance and descriptors extracted using the saliency-
based method. Fig. 4 shows the precision-recall curves cor-
responding to these configurations. (Precision is the fraction
of correct retrievals and recall is the fraction of ground truth
items retrieved for a given result set.) Precision and recall are
calculated as the number of retrievals is varied from 1 to 2100,
and the plots are the average taken over all 2100 queries. The
saliency-based local features result in higher precision for all
but the lowest recall levels.

Table I also indicates how long the similarity retrievals took
in seconds as an empirical comparison of the computational
complexity of the different descriptors and their distance mea-
sures. The table shows the number of seconds required to
perform 2100 queries in which the pairwise distance between
a query and 2100 target images is computed and then used
to order the result sets. These are approximate timings on a
standard desktop machine and are provided for comparison
purposes.

The remainder of this section describes the performance of
the specific features in more detail.
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Fig. 5. Per class performance corresponding to the optimal feature configurations.

Fig. 6. Confusion matrices corresponding to (a) simple statistics features, (b) texture features, (c) color histogram features, and (d) saliency-based local features.
The rows indicate the query class and the columns the target classes. For each query image, we record the fraction of images in the top 100 retrievals that are in
each of the 21 target classes. These values are then averaged over all 100 query images.

A. Texture

Table II shows the ANMRR values and timings of differ-
ent texture feature configurations. The RI distance measure
performs better than the orientation selective one. This makes
sense because the image classes do not have a preferred ori-
entation: either they do not have a distinct orientation—e.g.,
chaparral—or, if they do, it is not consistent—e.g., beach. The
RI measure does take considerably longer as expected due to its
increased computational complexity.

The unnormalized texture features perform better than the L2
normalized ones. This is true for both distance measures. This is
an interesting result which, to the best of our knowledge, has not
been investigated or reported before. Previous applications of
texture features based on Gabor filters [58] usually perform L2
normalization to account for different dynamic ranges between
the feature components. However, the design of the filterbanks
[35] includes scaling factors to compensate for the different
regions of support, and so our results indicate that further

normalization suppresses discriminative frequency information
and results in decreased performance.

Fig. 5 compares the per-class performance of the optimal tex-
ture feature configuration with the optimal configurations of the
other features (corresponding to Table I). Ignoring the baseline
simple statistics, the texture features perform the best on three
and the worst on one of the classes. They perform well on the
beach and golf course classes but poorly on the chaparral class.

Fig. 6 shows the “confusion matrices” for the different fea-
tures. The rows indicate the query class and the columns the
target classes. For each query image, we record the fraction
of images in the top 100 retrievals that are in each of the
21 target classes. These values are then averaged over all
100 query images and displayed in the confusion matrices
using a grayscale colorbar. For example, a value of 0.72 in row
X and column Y indicates that on average, 72% of the top
100 retrievals had class Y when class X is the query image.
The confusion matrix in Fig. 6(b) indicates the forest, river,
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TABLE III
PERFORMANCE OF COLOR HISTOGRAM FEATURES

and three residential classes appear very similar to the chaparral
class with respect to the texture features.

B. Color Histogram

Table III lists the performance of the color histogram features
computed in the three different color spaces and compared
using different dissimilarity measures. While the performance
varies with the particular color space and measure, it is overall
much worse than the texture features (compare with Table II)
and only marginally better than the baseline simple statistics.
This is not unexpected as many of the classes are spectrally
similar and differ mostly spatially. The best results use the EMD
distance with a cost matrix applied in the HLS color space
although the increased computational complexity is evident in
the timing.

Interestingly, there is no best color space. The HLS color
space is optimal for the two variants of the EMD and the inner
product dissimilarity measures; the Lab color space is optimal
for the Bhattacharyya, correlation, cosine, and L2 dissimilarity
measures; and the RGB color space is optimal for the chi-
square, intersection, and L1 dissimilarity measures.

Likewise, there also is no best dissimilarity measure. The
correlation, cosine, and inner product measures generally per-
form poorly. The chi-square measure is optimal for the Lab and
RGB color spaces, and second only to the EMD measures for
the HLS color space, and thus could be considered the best
measure overall. The L1 measure is computationally efficient
while nearly optimal. (While the intersection measure is equal
to the L1 measure for L1 normalized histograms, the L1 mea-
sure is computationally more efficient since it avoids computing
the minimum between feature components.) The chi-square and
L1 measures thus provide a performance-efficiency tradeoff for
similarity retrieval using color histogram features.

Fig. 5 indicates the optimal color histogram configuration
does not perform the best on any and performs the worst on
14 of the classes (again, ignoring the baseline simple statistics).
Color histogram features perform poorly on the agricultural,
freeway, and runway classes. The confusion matrix in Fig. 6(c)
indicates that, with respect to color histogram features, the
agricultural class appears similar to the golf course class, the
freeway class appears similar to the intersection and overpass
classes, and the runway class appears similar to the airport and
freeway classes. This makes sense based on the sample images
in Fig. 2.

C. Local Features

This section first presents some of the more general observa-
tions on the performance of the local invariant features, such as
whether the codebooks should be constructed using k-means
clustering based on the Euclidean or Mahalanobis distance.
It then focuses on details such as saliency- versus grid-based
feature extraction, the effect of the codebook size, and the
choice of dissimilarity measure. Finally, the local features are
compared to the other features considered in this study.

An exhaustive set of experiments are performed using all
possible combinations of codebook construction, feature nor-
malization, and dissimilarity measures. Codebooks were con-
structed through k-means clustering using either 100 000 or
one million randomly sampled SIFT descriptors using either
the Euclidean or Mahalanobis distance, and for codebook sizes
ranging from 10 to 20 000. Ten codebooks were created in each
case by randomly sampling different sets of SIFT descriptors.
Local feature histograms with dimension equal to the the size
of the codebooks were computed for each image based on the
unnormalized counts of the quantized features. Histograms of
L1 and L2 normalized counts were also computed. Finally, dis-
similarity comparison was computed using the Bhattacharyya,
chi-square, correlation, cosine, inner product, intersection, L1,
L2, and EMD cost matrix measures.

Clustering Using the Euclidean Versus Mahalanobis
Distance: The experiments indicate that codebooks con-
structed through k-means clustering using the Euclidean
distance perform better than those constructed using the
Mahalanobis distance. The Euclidean distance codebooks result
in a 1–2% increase in performance on average independent
of all other settings: sample size, codebook size, feature nor-
malization, and dissimilarity measure. Thus, it appears that
the correlations between dimensions in the 128-dimensional
SIFT feature space as well as the difference in scales along
the dimensions is important when using k-means clustering to
construct the codebooks.

Clustering One Hundred Thousand Versus One Million
Points: Codebooks constructed by applying k-means cluster-
ing to a million randomly sampled SIFT descriptors similarly
perform better than those constructed using only 100 thousand
descriptors. The increase is again around 1–2% on average
independent of other settings and can be as high as 5%.
Thus, the additional computation of applying k-means to larger
sample sets of points is worthwhile particularly since this is a
preprocessing step which does not impact the cost of retrieval.
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TABLE IV
ANMRR VALUES FOR SALIENCY- AND GRID-BASED LOCAL FEATURE EXTRACTION. VALUES REPORTED CORRESPOND TO THE

OPTIMAL CODEBOOK SIZE AND NORMALIZATION SCHEME (NOT LISTED) FOR EACH DISSIMILARITY MEASURE

Fig. 7. Effect of codebook size on retrieval performance for different dissimilarity measures. Results are shown for (a) unnormalized histogram features,
(b) L1 normalized histogram features, and (c) L2 normalized histogram features. These results are for saliency-based feature extraction.

Saliency-Based Versus Dense Extraction: The remainder of
the results in this section assume codebooks constructed by
applying k-means clustering using the Euclidean distance to
one million randomly sampled SIFT descriptors.

The experiments indicate that local invariant features ex-
tracted from salient image locations outperform on average
those extracted on a grid. Table IV compares the performance
of saliency- to grid-based feature extraction for different grid
spacings. Saliency-based extraction is shown to be optimal
for all dissimilarity measures. This reconfirms the benefit of
extracting features at locations based on the image content
that was the original motivation behind the SIFT and similar
detectors. The SIFT detector is designed to identify the same
object components regardless of where they appear in the image
and thus is not affected by possible misalignment problems that
result from using a fixed grid. Further, saliency-based extraction
only considers image locations where there is meaningful im-
age information. We note that other researchers have found the
opposite, that grid-based extraction is optimal. However, this
was for image classification and not retrieval and was not for
geographic images. Per-class comparisons between the optimal
saliency- and grid-based configuration are shown in Fig. 5. The
optimal grid-based configuration was found to be using the
L1 dissimilarity measure to compare unnormalized histograms
created using 20 000 codewords extracted from a 4-pixel grid.
The best ANMRR for this configuration was 0.6179.

Codebook Size and Dissimilarity Measure: Fig. 7 summa-
rizes the performance of the different dissimilarity measures by
plotting ANMRR values for codebook sizes ranging from 10

to 20 000. These results correspond to saliency-based feature
extraction—the plots have similar shapes for grid-based feature
extraction but are shifted up (worse ANMRR). Three plots are
shown. Fig. 7(a) shows the results for unnormalized histogram
features, Fig. 7(b) for L1 normalized histogram features, and
Fig. 7(c) for L2 normalized histogram features. Error bars
indicate the standard deviation of the ANMRR values over
the ten different codebooks (again, corresponding to clustering
different random sets of SIFT descriptors). The results corre-
sponding to the EMD cost matrix measure were significantly
worse than any other measure and are thus not included in the
detailed analysis.

The best results correspond to using the L1 measure to
compare L1 normalized features for larger codebook sizes.
Much more can be observed from these plots however. Inter-
estingly, the effect of codebook size on performance generally
falls into two categories. Either the performance improves with
increasing size, in most cases in a monotonic fashion until
gently peaking for large codebooks of size around 15 000; or
the performance improves sharply for small codebook sizes
but then decreases steadily for larger sizes. The behavior of a
specific dissimilarity measure depends on the feature normal-
ization. These findings are significant because they show that
the range of optimal codebook sizes depends greatly on the
choice of normalization and measure. Larger codebooks tend
to result in increased performance. However, there are some
important cases where a narrow range of small codebook sizes
is nearly optimal which is important since retrieval and storage
costs are often a concern.
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TABLE V
RESULTS FOR DIFFERENT DISSIMILARITY MEASURES FOR HISTOGRAMS OF QUANTIZED LOCAL FEATURES.

THESE RESULTS ARE FOR SALIENCY-BASED FEATURE EXTRACTION

The best performance for unnormalized features results from
the correlation measure applied to a codebook of size 15 000
[see Fig. 7(a)]. This performance is not significant since it is
still worse than the best results corresponding to normalized
features, and correlation is one of the more computationally
expensive measures. The performance of the L1, L2, and chi-
square measures does peak for small codebook sizes but not
sufficiently to make the application of these measures to unnor-
malized features a competitive configuration.

The best performance for L1 normalized features results
from the L1 or, equivalently, intersection measure applied to
a codebook of size 15 000 [see Fig. 7(b)]. The performance of
the L2 distance does peak for small codebook sizes but again
not sufficiently.

The best performance for L2 normalized features results
from the chi-square measure applied to a codebook of size
only 150 [see Fig. 7(c)]. The chi-square performance peaks
for a narrow range of small codebook sizes. The next best
performance is the correlation measure applied to a codebook
of size 15 000. Also, noteworthy is the L1 measure which also
peaks for small codebook sizes and whose optimal performance
for a codebook of size 150 is only slightly worse than the
optimal chi-square and correlation results but is significantly
more efficient.

Table V shows the optimal performance for each of the
dissimilarity measures. Since each measure/codebook-size/
feature-normalization combination is evaluated using ten code-
books corresponding to different random sets of SIFT descrip-
tors, this table reports both the results from the best codebook
in the column labeled “ANMRR (best)” as well as the average
and standard deviation over the ten codebooks in the column
labeled “ANMRR (overall).” The ranking of the dissimilarity
measures is the same for both. Also, shown in the last two
rows is the results for the chi-square and L1 measures for
small codebooks of size 150 of L2 normalized histogram
features. These configurations perform slightly worse than the
optimal configuration resulting in performance reductions of
1.7% and 2.2%, respectively. However, they are significantly
more efficient, requiring histogram features that are two orders
of magnitude smaller and retrieval times that are one and
two orders of magnitude faster, respectively. They are still
more effective and more efficient than the optimal configu-
rations of the texture and color histogram features shown in
Table I, and thus represent an excellent efficiency-performance
trade off.

Fig. 5 indicates the optimal local feature configuration for
sparse-based extraction performs the best on eight and the
worst on five of the classes. This configuration performs par-
ticularly well on the chaparral, harbor, and parking classes
when compared to the other methods. The optimal local feature
configuration for grid-based extraction performs the best on ten
and the worst on one of the classes (but still performs worse
than sparse-based extraction when averaged across all classes).
This configuration performs particularly well on the forest class
when compared to the other methods.

Fig. 8 presents select retrieval results corresponding to the
optimal local feature configuration for sparse-based extraction.
The results are shown for queries from 11 classes ordered by
decreasing performance based on average ANMRR.

VII. DISCUSSION

It is worthwhile discussing the performance of the local
features in the context of the desirable properties described in
Section III-A. The experimental results indicate the saliency-
based local features perform well on the chaparral, dense
residential, harbor, mobile home park, and parking classes.
These classes are characterized by repeated occurrences of
a specific object—i.e., parking lots consist of cars parked in
varying spatial arrangements—which leads to hypothesize the
following. The local property enables the features to detect
the individual object instances as opposed to characterizing the
gestalt or overall essence of an image. The invariance property
enables the objects to be detected regardless of where or in
what orientation they appear in an image. It also enables them
to be detected independent of photometric variations such as
illumination intensity and density as well as differences in
color. The features are shown to be robust to other image
variations such as the amount of the noise in the images and the
quality of the different camera systems in terms of visual acuity
(see, for example, the variation in the images of the parking
lot class in Fig. 2). The density of the features allows them to
be robust against occlusion caused by shadows, trees, etc. It
also allows them to be robust against missed detections which is
important for detecting the large number of object occurrences.
The local features are efficient which is import for real-time
application or use in large image data sets. The appropriate
pairing of small codebooks and dissimilarity measures resulted
in retrieval performance times that were an order of magnitude
or faster than competitive features. Moreover, while we did not
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Fig. 8. Sample retrievals for different classes corresponding to the optimal local feature configuration for sparse-based extraction. The classes are ordered in
increasing average ANMRR. The leftmost image is the query image in each case, and the remaining images are the top ten retrievals in decreasing order of
similarity. The captions indicate the average ANMRR for the classes as well as the rank and class of the incorrect retrievals for the specific query. (a) Chaparral:
ANMRR = 0.0316; (b) harbor: average ANMRR = 0.2757; (c) agricultural: ANMRR = 0.3537; (d) mobile home park: ANMRR = 0.5202 (1: buildings;
3: dense residential; 7: buildings; 8: buildings); (e) overpass: ANMRR = 0.5786 (2: tennis courts; 3: freeway; 4: buildings; 5: runway; 6: buildings; 8: airplane;
9: freeway; 10: runway); (f) dense residential: ANMRR = 0.6 (6: medium density residential; 7: medium density residential; 9: intersection); (g) buildings:
ANMRR = 0.6771 (1: tennis courts; 6: airplane; 7: dense residential; 10: tennis courts); (h) baseball diamond: ANMRR = 0.7507 (2: storage tanks; 4: runway;
5 overpass; 6: freeway; 7: runway; 10 runway); (i) beach: ANMRR = 0.7828 (1: chaparral; 2: chaparral; 3: chaparral; 4: chaparral; 5: chaparral; 6: chaparral;
7: chaparral; 9: chaparral; 10: chaparral); (j) medium density residential: ANMRR = 0.7998 (2: tennis courts; 3: dense residential; 4: dense residential; 6: dense
residential; 7: sparse residential; 8: airplane; 9: dense residential); (k) storage tanks: ANMRR = 0.8451 (5: baseball diamond; 7: beach; 8: buildings; 9: baseball
diamond; 10: overpass).
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address the computational costs of feature extraction in this
paper, we demonstrated in earlier work that SIFT features are a
magnitude faster to extract than Gabor texture features [59].

The saliency-based local features perform poorly on the
baseball diamond, beach, golf, and runway classes. Saliency-
based feature extraction results in relatively few features in
these classes as indicated in Fig. 3 as they tend to contain
large uniform regions. The sparseness of the resulting BOVW
histograms reduces their discrimination ability.

The texture features perform well on the beach, baseball
diamond, golf course, intersection, river, and the sparse and
medium density residential classes. The grid-based local fea-
tures also perform well on these classes. This correlation is
likely due to the fact that extracting SIFT descriptors—which
are after all summaries of local edge information—on a regular
grid is similar to applying Gabor filters which can also be
considered local edge detectors.

Finally, it is interesting that the saliency-based local features
perform better than the texture features on the classes which
upon first inspection appear more “texture” like. For example,
the rows of cars in the parking lots or the boats in the harbor
result in the kinds of regular patterns suitable for representation
by frequency-based texture features. However, upon closer
examination, these patterns do vary at the microscopic level in
that the elements are often missing, such as empty boat slips, or
are arranged at different angles with respect to each other such
as the parked cars. The patterns also vary at the macroscopic
level in that the rows do not necessarily have the same spacing
from one image to another. Saliency-based local features are
more invariant to these micro- and macroscopic variations since
they instead detect the individual objects or parts thereof. These
irregularities can also explain why the grid-based local features
perform poorly on these classes.

VIII. CONCLUSION

We presented an investigation into local invariant features
for overhead image retrieval, the first such study of its kind.
We demonstrated that local invariant features are more ef-
fective than standard features such as color and texture for
image retrieval of LULC classes in high-resolution aerial im-
agery. We also quantitatively analyzed the effects of a number
of design parameters on a BOVW representation including
saliency- versus grid-based feature extraction, the size of the
visual codebook, the clustering algorithm used to create
the codebook, and the dissimilarity measure used to compare
the BOVW representations. We feel such a study is timely
given the increased interest by the remote sensing community
in using local features for image analysis. While the focus is
on image retrieval, we expect the insights on the effects of the
design parameters to be informative for other applications such
as detection and classification.

We created a first-of-its-kind 21 LULC evaluation data set
using imagery that is already in the public domain. We will
make this data set available to other researchers with the
expectation that it will help advance overhead image analysis
in the same way that similar data sets have done for other areas
of computer vision.
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