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ABSTRACT

A richer set of land-cover classes are observable in satellite
imagery than ever before due to the increased sub-meter res-
olution. Individual objects, such as cars and houses, are now
recognizable. This work considers a new category of im-
age descriptors based on local measures of saliency for la-
belling land-cover classes characterized by identi able ob-
jects. These descriptors have been successfully applied to ob-
ject recognition in standard (non-remote sensed) imagery. We
show they perform comparably to state-of-the-art texture de-
scriptors for classifying complex land-cover classes in high-
resolution satellite imagery while being approximately an or-
der of magnitude faster to compute. This speedup makes them
attractive for realtime applications. To the best of our knowl-
edge, this is the rst time this new category of descriptors has
been applied to the classi cation of remote sensed imagery.

Index Terms— Image classi cation, interest points, tex-
ture features, remote sensed imagery

1. INTRODUCTION

Novel geographic information platforms such as Google
Earth and Microsoft Virtual Earth have enabled increased ac-
cess to remote sensed imagery. These systems, however, only
support visualization of the raw image data. Techniques for
automatically annotating the image content would allow for
richer user interaction and support exciting new applications.

Remote sensed image classi cation remains a challenging
problem. While there have been noted successes over the last
several decades in using descriptors such as spectral, shape,
and texture features, signi cant opportunities remain.

In this paper, we compare established approaches to im-
age classi cation based on Gabor texture features with classi-
cation based on a new category of low-level image analysis

termed interest point descriptors. These descriptors have en-
joyed surprising success recently when applied to a range of
challenging computer vision problems. There has been little
research, however, on applying them to remote sensed im-
agery. In previous work [1, 2], we explored content-based

image retrieval of remote sensed imagery using interest point
descriptors. In this paper, we turn to image classi cation.

We consider a diverse set of land-cover classes in which
individual objects, such as cars and houses, are recognizable.
We compare classi cation rates for Gabor texture features
and Scale-Invariant Feature Transform (SIFT) descriptors [3],
which were shown to outperform other interest point descrip-
tors in an image matching task [4]. We present results us-
ing both support vector machines and maximum a posteri-
ori classi cation using a large manually constructed ground
truth dataset. We show this new category of image descrip-
tors performs comparably to the state-of-the-art texture fea-
tures while being approximately an order of magnitude faster
to compute.

2. IMAGE DESCRIPTORS

2.1. SIFT Descriptors

SIFT based analysis involves detecting salient locations in an
image and extracting descriptors that are distinctive yet in-
variant to changes in viewpoint, illumination, etc. We use the
standard SIFT interest point detector and the standard SIFT
histogram-of-gradients descriptor. These 128 dimension de-
scriptors can be thought of roughly as summarizing the edge
information in an image patch centered at an interest point.

We term the 128 dimension descriptors the local SIFT de-
scriptors for an image. We also compute a single global SIFT
descriptor. This global descriptor is a frequency count of the
quantized local descriptors. We use the k-means algorithm to
cluster a large collection of SIFT descriptors and label each
local descriptor with the id of the closest cluster center. The
global SIFT descriptor is then computed as

SIFTGLOBAL = [t0, t1, . . . , tk−1] , (1)

where ti is number of occurrences of the quantized SIFT fea-
tures with label i. SIFTGLOBAL is similar to a term vector
in document retrieval. The global SIFT descriptors are nor-
malized to have unit length to account for the varying number
of local SIFT descriptors per image.
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2.2. Gabor Texture Features

Gabor texture features have proven to be effective for ana-
lyzing remote sensed imagery [5]. They were standardized
in 2002 by the MPEG-7 Multimedia Content Description In-
terface [6] after they were shown to outperform other texture
features in which one of the evaluation datasets consisted of
remote sensed imagery.

Gabor texture features are extracted by applying a bank of
scale and orientation selective Gabor lters to an image [7].
A lterbank with R orientations and S scales results in a total
of RS ltered images

f ′11 (x, y) , . . . , f ′RS (x, y) . (2)

Considered differently, this data cube represents an RS di-
mension feature vector at each pixel location. We term these
the set of local Gabor texture features for an image. We form
a single global Gabor texture feature by computing the mean
and standard deviation of the ltered images. A 2RS dimen-
sion feature vector, GaborGLOBAL, is formed as

GaborGLOBAL = [μ11, σ11, μ12, σ12, . . . , μRS , σRS ] , (3)

where μrs and σrs are the mean and standard deviation of
f ′rs (x, y). Finally, to normalize for differences in range, each
of the 2RS components is scaled to have a mean of zero and
a standard deviation of one across a dataset.

3. CLASSIFICATION METHODS

3.1. Maximum A Posteriori

Image classi cation based on local features is performed us-
ing maximum a posteriori (MAP) classi ers. An image with
the set of local features, x, is assigned to class c∗ where

c∗ = arg max
1≤c≤C

P (c|x) . (4)

The feature distributions of the classes are modelled by Gaus-
sian mixtures so that the posterior probabilities, p(c|x), are
computed using Bayes’ rule where the class-conditioned
probabilities, p(x|c), are

p (x|c) =
J∑

j=1

P (j|c) p (x|j, c) . (5)

The class- and mixture-conditioned probabilities for a single
feature vector are

p (x|j, c) =
1

(2π)d/2 |Σj |1/2
e−

1
2 (x−μj)

T Σj(x−μj) (6)

where μj is the mean vector and Σj is the covariance matrix
of the jth mixture for class c. The local features are con-
sidered to be independent so the joint probability of a set of

features is computed as the product of the individual proba-
bilities. The Gaussian mixture model (GMM) parameters, μj

and Σj , are learned from a training set using the expectation-
maximization (EM) algorithm [8].

Design decisions for the MAP classi ers include the num-
ber of mixtures in the GMMs and the form of the covariance
matrices. We investigate these in the experiments below.

3.2. Support Vector Machines

The global features are classi ed using support vector ma-
chines (SVMs). When applied to classi cation, SVMs seek
the optimal separating hyperplane between two classes, typ-
ically in a higher dimensional space than the original fea-
tures. In our multi-class problem, we use a “one-against-one”
strategy wherein a binary classi er is trained for each pair
of classes. Unknown samples are classi ed using a major-
ity voting strategy among the binary classi ers. We use the
LIBSVM package [9] in the experiments below.

4. DATASET

A collection of 1-m panchromatic IKONOS satellite images
is used for evaluation. A ground truth dataset consisting
of ten sets of 100 64-by-64 pixel images was manually ex-
tracted from the IKONOS images for the following land cover
classes: aqueduct, commercial, dense residential, desert cha-
parral, forest, freeway, intersection, parking lot, road, and
rural residential. Examples are shown in Figure 1.

128 dimension local SIFT descriptors were extracted from
the images. Figure 2 shows the locations of these features as
determined by the SIFT detector. A large set of SIFT descrip-
tors randomly sampled from the full IKONOS image set was
clustered using the k-means algorithm. The local SIFT de-
scriptors were quantized by assigning the label of the closest
cluster center. The frequency counts of these labels form the
global SIFT descriptors (see Equation 1). Previous work [1]
showed that 50 clusters was optimal for content-based image
retrieval using quantized SIFT descriptors. Our global SIFT
features thus have dimension 50.

Gabor texture features were extracted from the images us-
ing a lterbank tuned to ve scales and six orientations [7].
The 30 dimension feature vectors, one at each pixel location,
form the local Gabor texture features. The mean and standard
deviation of each lter output form the 60 dimension global
Gabor texture features (see Equation 3).

Each ground truth image is thus represented by:

• A set of 128 dimension SIFT descriptors. Each image
has 59.1 descriptors on average.

• A 50 dimension global SIFT descriptor.

• A set of 30 dimension local Gabor texture features, one
at each pixel location.

• A 60 dimension global Gabor texture feature.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 1. Two examples from each of the ground truth classes. (a) Aqueduct. (b) Commercial. (c) Dense residential. (d) Desert
chaparral. (e) Forest. (f) Freeway. (g) Intersection. (h) Parking lot. (i) Road. (j) Rural residential.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 2. The interest point locations for the ground-truth images in Figure 1.

The difference in feature extraction times is signi cant. It
took approximately 353 seconds to extract the Gabor texture
features from the 1,000 images in the ground truth dataset
(using a typical desktop workstation). By comparison, it took
only approximately 51 seconds to extract the SIFT descrip-
tors. While the extraction software was not optimized and
the timing measurements were not controlled, we believe this
order-of-magnitude difference between the two features is to
be expected. Ef cient extraction is a noted strength of the
SIFT descriptors.

5. EXPERIMENTS AND RESULTS

The feature and classi er combinations are evaluated by ten-
fold cross validation. The ground truth dataset is split into
ten partitions each containing ten images from each of the ten
classes. Ten rounds of training and testing are performed in
which nine partitions are used for training and the remain-
ing partition is used for testing. Each round uses a different
partition for testing. A single classi cation rate is computed
indicating the percent of the 1,000 images that are assigned to
the correct class.

The MAP classi ers use the local features. A separate
classi er is trained for each class. All of the local SIFT de-
scriptors for an image are used in training and testing. Due
to the large number of local Gabor texture features–4,096 for
a 64-by-64 pixel image–only a random sampling of 100 fea-
tures per image is used. Using a larger number of samples did
not have a signi cant effect on the classi cation rates.

We rst investigated the number and shapes of the Gaus-
sians in the mixture models. We found that the classi cation

rates did not vary signi cantly between spherical Gaussians
(diagonal covariance matrix with the same value at each
entry), elliptical Gaussians with axes aligned with the dimen-
sions of the feature space (diagonal covariance matrix with
possibly different values), and elliptical Gaussians with axes
at any orientation (covariance matrix with possibly non-zero
off diagonal entries). Since the minimum description length
principle favors fewer parameters, spherical Gaussians are
used in the remainder of the results. Training via the EM
algorithm is also signi cantly faster in the spherical case.

Figure 3 plots the MAP classi cation rate versus the num-
ber of mixtures in the GMMs. The rate peaks at around ve
mixtures for both features. We therefore use ve mixtures in
the remainder of the results.

The SVM multi-class classi ers use the global features.
One classi er is trained and tested during each round of the
ten-fold cross validation. We use a linear kernel. Initial in-
vestigation into using other kernels, such as polynomial and
radial bases function produced similar classi cation rates.

Table 1 shows the classi cation rates for four different
combinations of features and classi ers: 1) local SIFT de-
scriptors classi ed using MAP classi ers; 2) local Gabor tex-
ture features classi ed using MAP classi ers; 3) global SIFT
descriptors classi ed using SVMs; and 4) global Gabor tex-
ture features classi ed using SVMs.

6. DISCUSSION

The ground truth dataset used in the experiments contains
substantial within class variability, as illustrated in Figure
1, so classi cation rates nearing 90% are signi cant. A re-
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Fig. 3. MAP classi cation rate versus number of mixtures.

Table 1. Classi cation rates for different feature and classi er
combinations.

SIFT Gabor
MAP 84.5% 73.9%
SVM 76.2% 89.8%

cent retrospective on satellite image classi cation reports that
the average classi cation rate over the last 15 years is only
76.19% with a standard deviation of 15.59% [10]. Of course,
the classi cation rate depends on the dif culty of the problem
so talking about an average rate across problems is not that
meaningful. Nonetheless, some of the feature and classi er
combinations presented above have rates at the top of this
distribution, a result underscored by the fact that only spa-
tial information is used. Incorporating spectral information
would certainly improve the results.

The best results are achieved by Gabor texture features
and SVM classi cation. However, the next best combination,
SIFT descriptors and MAP classi cation, perform compa-
rably so that the order of magnitude difference in feature
extraction speed could be a deciding factor especially for
realtime application. These two best results are also achieved
with features that are fundamentally different representa-
tions. A global Gabor texture feature is associated with a
well-de ned region, usually rectangular in shape. The local
SIFT descriptors can represent more general regions. While
both are applied here to classifying entire images, they could
enable different techniques when applied to classifying re-
gions within larger images. We are exploring the application
of SIFT descriptors to labelling arbitrary shaped regions in
remote sensed imagery. The controlled experiments using
the ground truth datasets presented in this paper represent an
important foundation for this future work.
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